Amide-Linked Ribonucleoside Dimers Derived from 5'-Amino-5'-deoxy- and 3'-(Carboxymethyl)-3'-deoxynucleoside Precursors ${ }^{1}$

Matt A. Peterson,* Bradley L. Nilsson, Sanchita Sarker, Bogdan Doboszewski, ${ }^{\dagger}$ Weijian Zhang, \ddagger and Morris J. Robins*
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700

Received May 27, 1999

Abstract

Treatment of tert-butyldimethylsilyl (TBDMS) derivatives of 3^{\prime}-keto(adenosine or uridine) with [(ethoxycarbonyl)methylene]triphenylphosphorane gave exocyclic alkenes that underwent stereoselective hydrogenation to give 3^{\prime}-deoxy-3'-[(ethoxycarbonyl)methyl](Ado or Urd) analogues. Saponification provided the 3^{\prime}-(carboxymethyl)-3'-deoxy(Ado and Urd) derivatives 37 and 38. Treatment of $\mathbf{3 7}$ or $\mathbf{3 8}$ with DCC and 5^{\prime}-amino- $2^{\prime}, 3^{\prime}$-bis-O-TBDMS-5'-deoxynucleosides gave the amide-linked dimers ($74-82 \%$). Activation of 37 or 38 with 4 -nitrophenol/DCC, and direct coupling of the 4 -nitrophenyl esters with 5^{\prime}-amino- 5^{\prime}-deoxy(Ado or Urd) in pyridine also produced amide dimers efficiently ($65-70 \%$). Analogous activation of a $5^{\prime}-\mathrm{O}-$ DMT-protected carboxylate, and its coupling with 5^{\prime}-amino- 5^{\prime}-deoxy-2'-O-methyladenosine gave the amide dimer in good yield (74\%). Coupling (DCC) of a 5^{\prime}-azido-2'-O-TBDMS-3'-(carboxymethyl)-3',5'-dideoxyuridineintermediate with 5'-amino-5'-deoxynucleosides gave amide-linked dimers (72-78\%) that can serve as masked (azide reduction) 5'-amino dimers for analogous synthesis of extended amide-linked oligomers.

Introduction

Major research efforts have been focused on synthesis of modified oligomers for antisense applications. ${ }^{2}$ Oligonucleotide analogues have been designed to have desirable properties, including (1) increased cellular permeability, (2) resistance to nucleol ytic degradation, and (3) increased affinity for target nucleic acids. Sugar and base modifications have been examined, ${ }^{3}$ but the primary target has been modification of the phosphodiester backbone. Serious limitations of phosphodiesters as antisense therapeutics are their low membrane permeability (negative charge density) and their high susceptibility to nucleolytic degradation. A number of phosphodiester replacements have been examined, ${ }^{2,4}$ and analogues containing modified linkages have exhibited promising properties in vitro and in vivo. Problems with

[^0]bioavailability and/or sequence-nonspecific side effects stimulate continued research in this area. ${ }^{5}$
We^{6} and others ${ }^{7,8}$ became interested in amide-linked oligonucleotide analogues for potential antisense applications. The Novartis group ${ }^{7}$ have shown that oligomers containing amide-linked 2'-deoxynucleoside analogues exhibited increased duplex stability ($0.4-0.9^{\circ} \mathrm{C} /$ dimer $)$ and resistance to degradation by (endo and exo)nucleases. Additional enhancements of duplex stability observed with oligomers containing amide-linked dimers with 2^{\prime} -O-methyl substituents on both sugar rings were attributed to increased population of the 3'-endo (ribo-like) furanose conformation range.7e NMR and molecular modeling studies were consistent with similar trends observed with oligonucleotides with analogous 2^{\prime}-substituents. ${ }^{9}$
(5) (a) Stein, C. A.; Cheng, Y .-C. Science, 1993, 261, 1004-1012. (b) Gura, T. Science, 1995, 270, 575-577. (c) Brach, A. D. TIBS 1998, 23, 45-50. (d) Damha, M. J.; Wilds, C. J.; Noronha, A.; Brukner, I.; Borkow, G.; Arion, D.; Parniak, M. A. J. Am. Chem. Soc. 1998, 120, 12976-12977.
(6) Zhang, W. Ph.D. Dissertation, Brigham Y oung University, 1992.
(7) (a) Lebreton, J.; De Mesmaeker, A.; Waldner, A.; Fritsch, V.; Wolf, R. M.; Freier, S. M. Tetrahedron Lett. 1993, 34, 6383-6386. (b) De Mesmaeker, A.; Lebreton, J .; Waldner, A.; Fritsch, V.; Wolf, R. M.; Freier, S. M. Synlett 1993, 733-736. (c) Lebreton, J.; Waldner, A.; Lesueur, C.; De Mesmaeker, A. Synlett 1994, 137-140. (d) De Mesmaeker, A.; Waldner, A.; Lebreton, J.; Hoffmann, P.; Fritsch, V.; Wolf, R. M.; Freier, S. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 226229. (e) De Mesmaeker, A.; Lesueur, C.; Bévièrre, M.-O.; Waldner, A.; Fritsch, V.; Wolf, R. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 27902794. (f) von Matt, P.; Lochmann, T.; Kesselring, R.; Altmann, K.-H. Tetrahedron Lett. 1999, 40, 1873-1876.
(8) (a) Idziak, I.; J ust, G.; Damha, M. J.; Giannaris, P. A. Tetrahe dron Lett. 1993, 34, 5417-5420. (b) Stork, G.; Zhang, C.; Gryaznov, S.; Shultz, R. Tetrahedron Lett. 1995, 36, 6387-6390. (c) Viswanadham, G.; Petersen, G. V.; Wengel, J. Bioorg. Med. Chem. Lett. 1996, 6, 987-990. (d) Fujii, M.; Yamamoto, K.; Hidaka, J. Tetrahedron Lett. 1997, 38, 417-420.
(9) (a) Cummins, L. L.; Owens, S. R.; Risen, L. M.; Lesnik, E. A.; Freier, S. M.; McGee, D.; Guinosso, C. J .; Cook, P. D. Nucleic Acids Res. 1995, 23, 2019-2024. (b) Freier, S. M.; Altmann, K.-H. Nucleic Acids Res. 1997, 25, 4429-4443.

Scheme 1a

a Key: (a) TFA/H2O (9:1)/0 ${ }^{\circ} \mathrm{C}$; (b) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$; (c) TBAF/THF; (d) 2-Pyridone/DMF/70 ${ }^{\circ} \mathrm{C}$.

We have communicated ${ }^{10}$ synthesis of the γ-butyrolac-tone-fused (3.3.0) nucleosides $\mathbf{9}$ and $\mathbf{1 0}$ and their application for the preparation of amide-linked ribonucleoside dimers (Scheme 1) that were expected to have a favorable 3^{\prime}-endo conformational bias, ${ }^{7 e, 9}$ resistance to nucleases, and enhanced membrane permeability (no backbone charge). ${ }^{11}$ We had hoped that the lactones would be readily susceptible to ring opening with 5^{\prime}-amino-5'deoxynucleosides by analogy with model reactions. ${ }^{6,12}$ However, $\mathbf{9}$ and $\mathbf{1 0}$ proved to be unreactive with 5^{\prime}-amino5 '-deoxyadenosine at ambient temperature under a number of reaction conditions, including addition of several acylation promoters. Effective lactone opening (65-83\%) was achieved only at elevated temperatures ($70^{\circ} \mathrm{C} / \mathrm{DMF} /$ 24 h) with excess aminonucl eoside (5 equiv) and 2 -pyridone (2 equiv) as a promoter. We now report an alternative approach that employs ester saponification, carboxylate activation, and stoichiometric coupling with aminonucleosides to provide efficient conversions of $\mathbf{5}$, 6, and 8 to a number of amidelinked ribonucleoside dimers and intermediates suitable for further el ongation.

Results and Discussion

Treatment of $\mathbf{2}^{\prime}, 5^{\prime}$-bis-O-TBDMS-3'-keto(uridine or adenosine) ${ }^{13}$ with [(ethoxycarbonyl)methylene]triphenylphosphorane in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave adducts $\mathbf{1}^{14}$ or 3^{6} ($80-96 \%$). Stereoselective reduction ${ }^{10,14}$ of 3 (10% Pd$\mathrm{C} / \mathrm{MeOH}$) gave 6 , whose ribo configuration was indi cated by difference NOE (6% enhancement of the H^{\prime} ' resonance upon irradiation of H^{\prime}) and corroborated by conversion to lactone 10. This two-step sequence (Wittig olefination and stereoselective hydrogenation) provides a valuable alternative to freeradical coupling methods ${ }^{15}$ used for the preparation of 3^{\prime}-substituted $2^{\prime}, 3^{\prime}$-dideoxynucleosides. ${ }^{7,8}$

[^1]Monomers prepared by freeradical methods are obtained with high α-facial diastereoselectivity at C3' from 5'-Oprotected 2^{\prime}-deoxynucleosides. However, anal ogous treatment of $2^{\prime}, 5^{\prime}$-di-O-protected ribonucleosides resulted in coupling at the opposite (β) face to give contaminating ${ }^{15 f}$ or predominant ${ }^{7 e}$ formation of xylofuranosyl products. The sequence we have employed provides efficient access to 3^{\prime}-(carboxymethyl)-3'-deoxy compounds with the desired ribo configuration. The Novartis group ${ }^{7 f}$ has recently reported adoption of our approach ${ }^{10}$ for the stereoselective preparation of the ribo monomers.
Treatment of $\mathbf{1}$ or $\mathbf{3}$ with TFA/H $\mathrm{H}_{2} \mathrm{O}\left(9: 1,0^{\circ} \mathrm{C}\right)^{16}$ effected clean O5' desilylation to give 2 (90\%) or 4 (84\%), respectively. Hydrogenation of $\mathbf{2}$ or $\mathbf{4}$ gave $\mathbf{7}$ or $\mathbf{8}$ (80$98 \%)$. Hydrogenation of the adenine analogues $\mathbf{1}$ and $\mathbf{2}$ required more forcing conditions [150\% (w/w) catalyst, $30-35$ psi, 4 days) than the uracil derivatives $\mathbf{3}$ and $\mathbf{4}$ [5-40\% (w/w) catalyst, 5-10 psi, 1-2 days]. Partial saturation of the 5,6 -double bond of uracil sometimes occurred with $\mathbf{3}$ and $\mathbf{4}(\leq 10 \%$, dependent on the catal yst batch), but this could be avoided by adjustments of H_{2} pressure, catalyst ratio, and reaction time. Desilylation (TBAF/THF) of $\mathbf{5}$ or $\mathbf{7}$ gave $\mathbf{9}$ (72 or 83%, respectively), and parallel treatment of $\mathbf{6}$ or $\mathbf{8}$ gave $\mathbf{1 0}$ (85 and 93%, respectively). Treatment of 9 or $\mathbf{1 0}$ with 5^{\prime}-amino- 5^{\prime} deoxy(Ado or Urd) under various conditions failed to give amidelinked dimers. However, $\mathbf{9}$ or $\mathbf{1 0}$ reacted with $5^{\prime}-$ amino-5'-deoxyAdo (5 equiv) in the presence of 2-pyridone (2 equiv) in DMF ($70{ }^{\circ} \mathrm{C}, 24-30 \mathrm{~h}$) to give $\mathbf{1 1}$ (65%) or $\mathbf{1 2}$ (83%), respectively. Low reactivity of nucleoside fusedIactones with isobutylamine has been noted previously. ${ }^{17}$
We next examined coupling reactions of 4-nitrophenyl esters, and condensation of carboxylates (DCC), with aminonucleosides. Protection of 5^{\prime}-azido-5'-deoxy[Ado (13) or Urd (14)] (TBDMSCI/imidazole/pyridine) and azide reduction (1,3-propanedithiol) gave the 5'-amino-5'-deoxy derivatives $\mathbf{1 7}$ (51\%) or $\mathbf{1 8}$ (62\%) (Scheme 2). Silylation of 2'-O-methyl[Ado (19) or 5-methylU rd (20)] gave $\mathbf{2 1}$ or 22, which were selectively deprotected ($\mathrm{O5}^{\prime}$), converted to the 5^{\prime}-chloro-5'-deoxy derivatives $\mathbf{2 3}$ or $\mathbf{2 4}$, and treated with lithium or sodium azide to give $\mathbf{2 5}$ or $\mathbf{2 6}$. Deprotection of $\mathbf{2 5}$ or $\mathbf{2 6}$ (TBAF/THF) gave $\mathbf{2 7}$ or $\mathbf{2 8}$, which were hydrogenolyzed ($10 \% \mathrm{Pd}-\mathrm{C} / \mathrm{EtOH}$) to give 29 or 30. Benzoylation of 31 gave 32 (96%), and selective deprotection ($\mathrm{O5}^{\prime}$) gave $\mathbf{3 3}$ (81%). The limited solubility of 32 in TFA/ $\mathrm{H}_{2} \mathrm{O}$ required the use of a cosolvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The 5^{\prime}-O-TBDMS linkage is more stable in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}$ (20:9:1) than in TFA/H $\mathrm{H}_{2} \mathrm{O}$ (9:1), and longer reaction times at ambient temperature (extremely slow at $0{ }^{\circ} \mathrm{C}$) were required to effect complete cleavage. Treatment of 33 with $\mathrm{SOCl}_{2} /$ pyridine overnight at ambient temperature gave $34(70 \%)$, which was stirred with $\mathrm{LiN}_{3} / \mathrm{DMF} / 110^{\circ} \mathrm{C}$ to give 35. $\mathrm{SnCl}_{2} / \mathrm{MeOH}$ effected clean (TLC) reduction

[^2]Scheme 2a

$A=$ adenin- $9-y l, T=$ thymin-1-yl, $U=$ uracil-1-yl, $U^{B z}=3$-benzoyluracil- - -yl. $\mathrm{Si}=$ tert-butyldimethylsilyl.
 (c) TFA/H2O (9:1)/0 ${ }^{\circ} \mathrm{C}$; (d) $\left(\mathrm{SOCl}_{2}\right.$ or MsCl$) /$ pyridine; (e) $\left(\mathrm{NaN}_{3}\right.$ or LiN_{3})/DMF/110 ${ }^{\circ} \mathrm{C}$; (f) Bu4NF/THF; (g) H2/Pd-C; (h) BzCl/pyridine; (i) $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$.
of 35 to 36 (52\%), whereas certain other methods for conversion of azides to amines ($\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, 1,3$-propanedithi$\mathrm{ol}, \mathrm{Ph}_{3} \mathrm{P} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} /$ dioxane) gave mixtures.

Saponification of 5 or $6\left(\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}\right)$ gave the 3 '-(carboxymethyl) derivatives 37 (73%) or 38 (88%), respectively (Scheme 3). Anal ogous treatment of $\mathbf{8}$ or $\mathbf{4 0}$ gave 43 (66%) or 41 (77%), respectively. Stoichiometric DCC-mediated condensation of $\mathbf{3 7}$ or $\mathbf{3 8}$ with $\mathbf{1 7}$ or $\mathbf{1 8}$ generated the amide-linked dimers 46-48(74-82\%), and anal ogous coupling of $\mathbf{4 1}$ with $\mathbf{1 8}$ (0.9 equiv) or $\mathbf{4 2}$ (1.1 equiv) gave dimers 53 (78%) or 55 (72%).

Block incorporation of amide dimers into ol igonucleotides via automated synthesizer technology requires appropriate protection, and the DMT group at OF^{\prime} is used extensively. Treatment of $\mathbf{4 3}$ with DMTCI/pyridine gave 44 (62\%), which was subjected to DCC-mediated condensation with 36 to give 51 (71\%). Active ester 45 [prepared (61\%) from 44/4-nitrophenol/DCC] was treated with 29 (1.2 equiv)/THF/EtOH to give 52 (74%) and 39 [prepared (72%) from 37/4-nitrophenol/DCC] was treated with 5 '-amino-5'-deoxy(Ado or Urd) to give dimers 49 (65%) or 50 (70\%), respectively. Thus, standard protecting group manipulation is compatible with the present amidedimer chemistry. Dimers 53-57 were prepared to expl ore the potential of this approach for synthesis of amide ol igomers. Key intermediate 55 underwent saponification to give 57 (64\%). Treatment of 55 with 1,3-propanedithiol/ EtOH gave 56 (71%), and hydrogenation of 53 ($\mathrm{H}_{2} / 10 \%$ $\mathrm{Pd}-\mathrm{C} / \mathrm{THF}$) proceeded without incident to give 54 (63\%).

Conclusions

Free radical-mediated coupling procedures with $2^{\prime}, 5^{\prime}$ -di-O-protected nucleosides have resulted in contaminating ${ }^{15 f}$ or preferential ${ }^{7 e}$ attack at the β face to give xylofuranosyl products, whereas the present Wittig olefination of 3^{\prime}-keto- $2^{\prime}, 5^{\prime}$-bis-O-TBDMS nucleosides and stereoselective ${ }^{10,14}$ hydrogenation provides efficient access

Scheme ${ }^{3}{ }^{a}$

$a\left[\begin{array}{l}40 \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{N}_{3} \\ -41 \mathrm{R}=\mathrm{H}^{\prime} \mathrm{R}^{\prime}=\mathrm{N}_{3}\end{array}\right.$ $42 R=E t, R^{\prime}=N_{3} H_{2}$ - $43 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OH}$ $-44 R=H, R^{\prime}=O D M T-\square b$

41

$46 \mathrm{~B}=\mathrm{B}^{\prime}=\mathrm{A}, \mathrm{R}=\mathrm{Si} \quad 51 \mathrm{~B}=\mathrm{U}, \mathrm{R}=\mathrm{Bz}, \quad h-53 \mathrm{R}=\mathrm{OSi}, \mathrm{X}=\mathrm{N}_{3}$ $47 \mathrm{~B}=\mathrm{A}^{\prime}, \mathrm{B}^{\prime}=\mathrm{U}, \mathrm{R}=\mathrm{Si} \quad \mathrm{R}^{\prime}=\mathrm{Si} \quad \mathrm{Bz}, \quad h\left[-54 \mathrm{R}=\mathrm{OSi}, X=\mathrm{NH}_{3}\right.$ $48 \mathrm{~B}=\mathrm{B}^{\prime}=\mathrm{U}, \mathrm{A}=\mathrm{Si} \quad 52 \mathrm{~B}=\mathrm{A}, \mathrm{R}=\mathrm{H}, \quad \quad 55 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{N}_{3}$

$\mathrm{A}=$ adenin- $9-\mathrm{yl}, \mathrm{U}=$ uracil-1-yl, $\mathrm{Si}=$ tert-butyldimethylsilyl.
a Key: (a) (i) $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$, (ii) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$; (b) 4-nitrophenol/DCC; (c) ($\mathbf{1 7}$ or $\mathbf{1 8}$)/ $\mathrm{DCC}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) 5^{\prime}-amino- 5^{\prime}-deoxy(Ado or Urd)/ EtOH; (e) (i) $\mathrm{MsCl} /$ pyridine/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) $\mathrm{NaN}_{3} / \mathrm{DMF} / 110{ }^{\circ} \mathrm{C}$; (f) DMTCl/Et ${ }_{3} \mathrm{~N} /$ pyridine; (g) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH} / \mathrm{Et}_{3} \mathrm{~N}$; (h) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$; (i) 36/ $\mathrm{DCC} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (j) 29/EtOH; (k) 42/DCC/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
to 3'-deoxy-3'-(carboxymethyl)ribonucleoside derivatives. The 3'-deoxy-3'-[(ethoxycarbonyl)methyl](Ado and Urd) compounds 5-8 have been employed for synthesis of amide-linked ribonucleoside dimers. Derivatives 5-8 were saponified to give 3^{\prime}-(carboxymethyl)-3'-deoxy(Ado or Urd) intermediates, which were condensed (DCC) with protected 5 '-amino-5'-deoxynucleosides to give amide dimers in good yields. Conversion of the carboxymethyl intermediates into active esters (4-nitrophenol/DCC) allowed their coupling with unprotected 5^{5}-amino-5'deoxynucl eosides to give amide dimers with free hydroxyl groups. No problems were encountered with chemistry involved with the use of dimethoxytrityl (DMT) and other standard protecting groups.

Experimental Section

Uncorrected melting points were determined with a capilIary apparatus. ${ }^{1} \mathrm{H}(200$ or 500 MHz$)$ and ${ }^{13} \mathrm{C}(50 \mathrm{MHz})$ NMR spectra were determined with solutions in ($\mathrm{Me}_{4} \mathrm{Si}^{2}$)/CDCl ${ }_{3}$ unless otherwise noted. Observed ("apparent") multiplicities are noted with quotation marks for ${ }^{1} \mathrm{H}$ NMR peaks that should exhibit more complex splitting patterns. Mass spectra (MS and HRMS) were obtained with electron impact (EI, 20 eV), chemical ionization (Cl , isobutane), or fast-atom bombardment (FAB, NaOAc/thioglycerol or thioglycerol matrix) techniques. Reagent chemicals were used, and solvents were dried by reflux and distillation from standard drying agents under N_{2}. TLC was performed on Merck kieselgel $60-\mathrm{F}_{254}$ sheets, and Merck kieselgel 60 (230-400 mesh) was used for flash chromatography. ${ }^{18}$ "Solvent system A (SSA)" for chromatography is the separated organic phase of EtOAcli-PrOH/H2O (4:1:2). Elemental analyses were determined by $\mathrm{M}-\mathrm{H}-\mathrm{W}$ Laborato-
(18) Still, W. C.; Kahn, M.; Mitra, A. J . Org. Chem. 1978, 43, 29232925.
ries, Phoenix, AZ. Compounds 1, ${ }^{19}$ 5, ${ }^{14}$ 13, ${ }^{20}$ 14, ${ }^{21}$ 19, ${ }^{22}$ 20, ${ }^{22}$ and $\mathbf{3 1}^{23}$ were prepared as described.

General procedures A-F were performed with quantities and other conditions specified for the individual compounds. Procedure A (Desilylation of O5'). TFA/H2O was added to a cold flask (ice/ $\mathrm{H}_{2} \mathrm{O}$ bath) containing the silyl ether, and the solution was stirred at $\sim 0{ }^{\circ} \mathrm{C}$ until the desilylation was complete (TLC). Volatiles were evaporated quickly at $\leq 17^{\circ} \mathrm{C}$ (to minimize further solvolysis reactions). The residue was partitioned, and the aqueous layer was extracted. The combined organic phase was washed $\left(\mathrm{H}_{2} \mathrm{O}\right.$, brine) and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration, evaporation of volatiles, and chromatography of the residue gave the product. Procedure B (Hydrogenation of Alkenes). A mixture of the compound, 10\% $\mathrm{Pd}-\mathrm{C}$, and H_{2} in a solvent was shaken (Parr apparatus) at ambient temperature. The mixture was filtered (with Celite), and the filter cake was washed with solvent. Volatiles were evaporated from the combined filtrate to give the product. Procedure C (Chemical Reduction of Azides). $\mathrm{Et}_{3} \mathrm{~N}$ and 1,3-propanedithiol were added to a stirred, deoxygenated $\left(\mathrm{N}_{2}\right)$ solution of the azide in a solvent. Stirring was continued at ambient temperature (under N_{2}) until reduction was complete (TLC). Volatiles were evaporated, and the residue was chromatographed to give the product. Procedure D (Saponification of Esters). Solid NaOH was added to a stirred solution of the compound in an aqueous sol vent mixture, and stirring was continued at ambient temperature until saponification was complete (TLC). The solution was concentrated under reduced pressure, and the resulting aqueous solution was cooled ($\sim 0{ }^{\circ} \mathrm{C}$) and carefully acidified to $\mathrm{pH} \sim 2-4\left(\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}\right)$. The suspension was immediately partitioned (EtOAc/brine), and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Volatiles were evaporated, and the residue was chromatographed to give the product. Procedure E [DCC-Mediated Condensation of 3'-(Carboxymethyl)-3'-deoxy- and 5'-Amino-5'-deoxynucleoside Components]. A solution of the protected 3'-(carboxymethyl)-3'-deoxy- and 5'-amino-5'-deoxynudeoside components and DCC in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred overnight at ambient temperature (under N_{2}). When coupling was complete (TLC), the suspension was filtered (with Celite), the filter cake was washed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and the combined filtrate was evaporated. The residue was chromatographed to give the amide product. Procedure F (Condensation of 3'[[(4-Nitrophe-noxy)carbonyl]methyl]-3'deoxy- and 5'-Amino-5'-deoxynucleoside Components). A solution of the protected 3^{\prime} -(carboxymethyl)-3'-deoxynucleoside 4-nitrophenyl ester and 5'-amino-5'-deoxynucleoside components in a solvent was stirred at ambient temperature (coupling progress was monitored by TLC). Volatiles were evaporated, and the residue was chromatographed to give the amide product.

2'-O-(tert-B utyldimethylsilyl)-3'-deoxy-3'-[(ethoxycarbonyl)methylene]adenosine (2). Procedure A [1 (5.00 g, $8.87 \mathrm{mmol})$, TFA/H $\mathrm{H}_{2} \mathrm{O}(9: 1,80 \mathrm{~mL})$, $\sim 20 \mathrm{~min}$, partitioned ($\mathrm{EtOAc} / / \mathrm{NaCl} / \mathrm{H}_{2} \mathrm{O}$), aqueous layer extracted (EtOAc, $2 \times$), chromatography (EtOAc/hexanes, 7:3)] gave 2 (3.58 g, 90\%) as a solid foam: ${ }^{1} \mathrm{H}$ NMR $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 6.45$ (br $\mathrm{s}, 2 \mathrm{H}), 5.92$ ("t", J $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.50(\mathrm{~m}, 3 \mathrm{H}), 4.21(\mathrm{q}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{dd}, \mathrm{J}=11.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, \mathrm{J}=$ $12.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.09$ $(\mathrm{s}, 3 \mathrm{H}),-0.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.1,158.6,155.9$, 152.2, 148.6, 140.7, 121.0, 114.2, 90.1, 81.9, 75.0, 63.8, 60.6, $25.5,17.7,14.2,-4.9,-5.9$; MS (FAB) m/z $450.2180\left(\mathrm{MH}^{+}\right.$ $\left.\left[\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}\right]=450.2173\right)$.

2,5'-Bis-0-(tert-butyldimethylsilyl)-3'deoxy-3'-[(ethoxycarbonyl)methylene]uridine (3). A solution of $2^{\prime}, 5^{\prime}$-bis-O-TBDMS-3'-ketouridine ${ }^{13}$ ($619 \mathrm{mg}, 1.32 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2}-$

[^3]Et ($550 \mathrm{mg}, 1.58 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was refluxed for 16 h . Volatiles were evaporated, and the residue was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 3 ($689 \mathrm{mg}, 96 \%$) as a solid foam: ${ }^{1} \mathrm{H}$ NMR $\delta 9.39$ (br s, 1H), 8.01 (d, J $\left.=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.98(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ ("t", J $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (dd, $J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{dt}, \mathrm{J}=7.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28-4.13(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{dd}, \mathrm{J}=11.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{br} \mathrm{s}, 18 \mathrm{H}), 0.05,0.03,0.02,-0.08$ $(4 \times \mathrm{S}, 4 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.1,162.9,159.2,150.5,139.8$, $113.9,103.2,85.6,80.0,76.9,64.5,60.6,25.8,25.5,18.3,17.8$, 14.2, -4.9, -5.1, -5.6; MS (FAB) m/z $541.2773\left(\mathrm{MH}^{+}\right.$ $\left.\left[\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}\right]=541.2765\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}$: C, 55.52; H, 8.20; N, 5.18. Found: C, 55.69; H, 8.00; N, 5.09.
2-O-(tert-Butyldimethylsilyl)-3'-deoxy-3'-[(ethoxycarbonyl)methylene]uridine (4). Procedure A [3 (3.00 g, 5.55 mmol), TFA/H2O (9:1, 60 mL), partitioned (EtOAc//NaCl/ $/ \mathrm{H}_{2} \mathrm{O}$), aqueous layer extracted (EtOAc, $2 \times$), chromatography $(30 \rightarrow$ 70% EtOAc/hexanes)] gave 4 ($1.99 \mathrm{~g}, 84 \%$) as a solid foam: ${ }^{1} \mathrm{H}$ NMR $\delta 9.81$ (br s, 1H), $7.60(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ (" t ", $\mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, 1 H), 5.36 (br s, 1H), 5.12 ("d", J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, \mathrm{J}=11.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.25 (br s, 1H), 1.28 (t, J $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}),-0.08$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR δ 165.1, 163.4, 158.7, 150.6, 142.3, 114.5, 103.2, 90.4, 80.3, 74.3, 63.4, 60.6, 25.5, 17.7, 14.1, -4.9, -5.1; MS (FAB) m/z $427.1916\left(\mathrm{MH}^{+}\left[\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\right]=427.1901\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}: ~ C, 53.50 ; \mathrm{H}, 7.09 ; \mathrm{N}, 6.57$. Found: C, 53.36; H, 7.23; N, 6.42.

2,5'-Bis-O-(tert-butyldimethylsilyl)-3'deoxy-3'[(ethoxycarbonyl)methyl]uridine (6). Procedure B [3 (100 mg, 0.185 mmol), $10 \% \mathrm{Pd}-\mathrm{C}\left(39 \mathrm{mg}\right.$), H_{2} ($5-10 \mathrm{psi}$), dried MeOH (15 mL), 38 h] gave 6 ($94 \mathrm{mg}, 94 \%$) as a solid foam: ${ }^{1} \mathrm{H}$ NMR δ 8.55 (br s, 1H), $8.20(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.61$ (dd, $\mathrm{J}=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-3.99(\mathrm{~m}$, 4 H), 3.70 (dd, J $=12.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.22$ ("d", J $=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.6,163.3,150.1,140.4,101.2,91.3,84.4,69.1,61.3,60.7$, 37.0, 29.1, 25.9, 25.8, 18.4, 18.1, 14.2, -4.5, -5.5, -5.6, -5.7; MS (FAB) m/z $543.2927\left(\mathrm{MH}^{+}\left[\mathrm{C}_{25} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}\right]=543.2922\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}$: C, 55.32; $\mathrm{H}, 8.54 ; \mathrm{N}, 5.16$. Found: C, 55.10; H, 8.23; N, 5.07.

2'0-(tert-B utyldimethylsilyl)-3'-deoxy-3'-[(ethoxycarbonyl)methyl]adenosine (7). Procedure B [2 (100 mg, 0.222 mmol), 10\% Pd-C (0.150 g), H_{2} (30-35 psi), dried MeOH, 4 days] gave 7 ($80 \mathrm{mg}, 80 \%$) as a solid foam: ${ }^{1} \mathrm{H}$ NMR $\delta 8.31$ (s, 1H), 8.26 (s, 1H), $6.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (dd, J $=5.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.22(\mathrm{~m}, 4 \mathrm{H}), 3.75$ (dd, J $=$ $12.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, \mathrm{J}=17.3,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, \mathrm{J}=17.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 172.3, 153.9, 149.6, 148.2, 141.1, 120.0, 91.8, 85.8, 76.2, 62.3, $60.9,38.0,31.0,25.6,17.9,14.2,-5.1,-5.4 ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $452.2330\left(\mathrm{MH}^{+}\left[\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}\right]=452.2329\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 53.19 ; \mathrm{H}, 7.37 ; \mathrm{N}, 15.51$. Found: C, 53.08; H, 7.15; N, 14.95.
2-0-(tert-Butyldimethylsilyl)-3'-deoxy-3'-[(ethoxycarbonyl)methyl]uridine (8). Procedure B [4 (65 mg, 0.15 mmol), $10 \% \mathrm{Pd}-\mathrm{C}(15 \mathrm{mg}), \mathrm{H}_{2}$ (5 psi), dried MeOH (10 mL), 2 days] gave 8 ($63 \mathrm{mg}, 98 \%$) as a solid foam: ${ }^{1} \mathrm{H}$ NMR $\delta 9.53$ (br $\mathrm{s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, \mathrm{J}=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.65(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.10-4.05 (m, 2H), 3.70 ("d", J $=13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (br s, 1H), 2.64 (dd, J $=16.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.43$ (m, 1H), 2.37 (dd, $\mathrm{J}=15.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 0.25 (s, 3H), $0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 173.1, 164.3, 150.5, 140.9, 101.4, 91.8, 85.5, 78.8, 61.4, 60.8, 36.7, 30.1, 26.0, 18.2, 14.4, $-4.2,-5.3 ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 429.2067\left(\mathrm{MH}^{+}\left[\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\right]=\right.$ 429.2057). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}$: C, 53.25; H, 7.53; $\mathrm{N}, 6.54$. Found: C, 53.13; H, 7.46; N, 6.43.

3-(Carboxymethyl)-3'deoxyadenosine-2, 3-lactone (9). TBAF/THF (1.0 M ; $1.27 \mathrm{~mL}, 1.27 \mathrm{mmol}$) was added to a solution of 7 ($452 \mathrm{mg}, 1.00 \mathrm{mmol}$) in THF (11 mL), and stirring was continued for 16 h at ambient temperature. Silica gel (3 g) was added, volatiles were evaporated, and the loaded
adsorbent was added to a flash column. Chromatography ($3 \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a solid that was triturated with MeOH to give 9 ($243 \mathrm{mg}, 83 \%$) with $\mathrm{mp} 233-236{ }^{\circ} \mathrm{C}$ dec: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 2 \mathrm{H}), 6.27$ (d, J $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, \mathrm{J}=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, \mathrm{J}=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.00$ $(\mathrm{m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=18.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, \mathrm{J}=18.1$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$; solvent-peak overlap); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) δ 176.0, 156.4, 153.1, 149.0, 139.8, 119.3, 88.2, 87.3, 86.6, 84.6, 61.9, 32.3; MS (FAB) m/z $292.1040\left(\mathrm{MH}^{+}\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{4}\right]=\right.$ 292.1046).
$\mathbf{3}^{\mathbf{\prime}}$-(Carboxymethyl)-3'-deoxyuridine-2', $\mathbf{3}^{\prime}$ 'lactone (10). TBAF/THF ($1.0 \mathrm{M} ; 0.39 \mathrm{~mL}, 0.39 \mathrm{mmol}$) was added to a solution of $\mathbf{8}(150 \mathrm{mg}, 0.350 \mathrm{mmol})$ in THF (4 mL), and stirring was continued for 24 h at ambient temperature. Evaporation of volatiles gave a residue that was washed (EtOAc, $4 \times$) and chromatographed ($3 \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give $\mathbf{1 0}(87 \mathrm{mg}$, 93\%) as a solid foam: ${ }^{1}$ H NMR (DMSO-d 6) $\delta 11.42$ (br s, 1H), $7.81(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.15 (dd, J = 7.1, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 ("d", J $=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.11$ (" $\mathrm{q} ", \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (dd, J = 18.0, $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 ("d", J = $18.5 \mathrm{~Hz}, 1 \mathrm{H}$; solvent-peak overlap); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) δ 175.6, 163.2, 150.2, 141.6, 101.8, 89.93, 89.87, 87.2, 85.8, 60.8, 31.7; $\mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 268.0682\left(\mathrm{M}^{+}\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}\right]=268.0695\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 49.26; $\mathrm{H}, 4.51 ; \mathrm{N}, 10.44$. Found: C, 49.24; H, 4.77; N, 10.54.

3'-Deoxy-3'-[[N-(5'-deoxyadenosin-5'-yl)carboxamido]methyl]adenosine (11). A stirred solution of $9(25 \mathrm{mg}, 0.086$ mmol), 5^{\prime}-amino-5'-deoxyAdo ($114 \mathrm{mg}, 0.428 \mathrm{mmol}$), and 2-pyridone ($16 \mathrm{mg}, 0.17 \mathrm{mmol}$) in DMF (2 mL) was heated for 24 h at $70^{\circ} \mathrm{C}$. TLC indicated conversion to a less polar product ($R_{f} \sim 0.5$; SSA). Volatiles were evaporated, the residue was suspended in MeOH , silica gel ($\sim 1 \mathrm{~g}$) was added, and the mixture was added to a flash column. Chromatography (SSA) gave 11 ($31 \mathrm{mg}, 65 \%$): ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$) $\delta 8.41$ $(\mathrm{s}, 1 \mathrm{H}), 8.34(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.13$ ($\mathrm{s}, 1 \mathrm{H}$), $7.31(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.26$ (br s, 2H), $5.89(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}$, $\mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.67$ (" $\mathrm{q} ", \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.45(\mathrm{dt}, \mathrm{J}=5.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (dd, J $=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95-3.93(\mathrm{~m}, 2 \mathrm{H})$, 3.73 (ddd, $\mathrm{J}=12.5,5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (ddd, J $=12.3,6.0,3.8 \mathrm{~Hz}$, 1H), 3.44-3.34 (m, 2H), 2.74-2.67 (m, 1H), 2.53 (dd, J = 16.0, $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (dd, J $=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DMSO$\mathrm{d}_{6}, 125 \mathrm{MHz}$) $\delta 171.2,156.1,155.9,152.4,152.3,149.1,148.7$, $140.2,138.7,119.4,119.0,90.1,87.8,84.5,83.5,75.5,72.5,71.1$, 61.1, 30.9; MS (FAB) m/z $558.2184\left(\mathrm{MH}^{+}\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{11} \mathrm{O}_{7}\right]=\right.$ 558.2173).

3'-Deoxy-3'-[[N-(5'-deoxyadenosin-5'-yl)carboxamido]methyl]uridine (12). A solution of $\mathbf{1 0}$ ($14 \mathrm{mg}, 0.052 \mathrm{mmol}$), 5'-amino-5'-deoxyAdo ($69 \mathrm{mg}, 0.26 \mathrm{mmol}$), and 2-pyridone (10 $\mathrm{mg}, 0.10 \mathrm{mmol})$ in DMF (1.5 mL) was stirred for 30 h at 70 ${ }^{\circ} \mathrm{C}$. Workup and chromatography (as described for $\left.\mathbf{9 \rightarrow 1 1}\right)$ gave 12 ($23 \mathrm{mg}, 83 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{6} \mathrm{~d}_{6} / \mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$) $\delta 8.33$ $(\mathrm{s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, \mathrm{~J}=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.67 (dd, J $=6.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ ("d", J $=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.08-$ $4.03(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, \mathrm{J}=12.7,2.0 \mathrm{~Hz}$, 1 H), 3.48 (dd, J $=12.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (dd, J $=14.2,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=14.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 1 \mathrm{H})$, 2.20 (dd, J $=14.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 125 \mathrm{MHz}$) $\delta 172.4,164.5,156.4,153.2,151.0,149.6,141.3,141.2,119.8$, 101.4, 91.5, 88.5, 85.0, 84.1, 76.3, 73.2, 71.6, 63.0, 60.7, 31.2, 25.7; MS (FAB) m/z 535.1904 (MH $\left.{ }^{+}\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{8} \mathrm{O}_{9}\right]=535.1901\right)$.
5^{\prime}-Azido- $\mathbf{2}^{\prime}, 3^{\prime}$-bis-O-(tert-butyldimethylsilyl)-5'-deoxyadenosine (15). A solution of 13 ($408 \mathrm{mg}, 1.40 \mathrm{mmol}$), TBDMSCI ($742 \mathrm{mg}, 4.92 \mathrm{mmol}$), and imidazole ($344 \mathrm{mg}, 5.05$ mmol) in dried pyridine (6 mL) was heated for 8 h at $70^{\circ} \mathrm{C}$ (under N_{2}). The mixture was poured into $\mathrm{NaHCO} / \mathrm{H}_{2} \mathrm{O}$ and extracted $\left(\mathrm{CHCl}_{3}, 3 \times\right)$. The combined organic phase was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and filtered. Volatiles were evaporated, and the residue was chromatographed (EtOAc/hexanes, 7:3) to give 15 as a white solid ($445 \mathrm{mg}, 61 \%$): $\mathrm{mp} 208-210^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ $8.36(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{br} \mathrm{s}$,
$2 \mathrm{H}), 4.94(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 0.83(\mathrm{br}$ $\mathrm{s}, 9 \mathrm{H}), 0.12,0.11,-0.01,-0.18(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 156.0, 152.9, 149.5, 140.0, 120.5, 89.8, 82.8, 74.2, 72.3, 51.5, 25.7, 25.6, 17.9, 17.7, -4.6, -4.9, -5.0, -5.1; MS (FAB) m/z $521.2826\left(\mathrm{MH}^{+}\left[\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{Si}_{2}\right]=521.2840\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{Si}_{2}: \mathrm{C}, 50.74 ; \mathrm{H}, 7.74 ; \mathrm{N}, 21.52$. Found: C, 50.86 ; H, 7.84; N, 21.70.

5'-Azido-2 , $\mathbf{3}^{\prime}$-bis-O-(tert-butyldimethylsilyl)-5'-deoxyuridine (16). A solution of $\mathbf{1 4}(2.82 \mathrm{~g}, 10.5 \mathrm{mmol})$, TBDMSCl $(6.4 \mathrm{~g}, 43 \mathrm{mmol})$, and imidazole ($3.4 \mathrm{~g}, 50 \mathrm{mmol}$) in dried pyridine (30 mL) was stirred for 24 h at ambient temperature (under N_{2}). Volatiles were evaporated, and the residue was partitioned ($\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O} / / \mathrm{CHCl}_{3}$). The aqueous layer was extracted $\left(\mathrm{CHCl}_{3}, 2 \times\right)$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. Volatiles were evaporated to give a solid foam ($4.7 \mathrm{~g}, 90 \% ; \sim 95 \%{ }^{1} \mathrm{H}$ NMR purity): ${ }^{1} \mathrm{H}$ NMR δ 8.83 (s, 1H), $7.70(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.67(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.93(\mathrm{~m}$, 1 H), $3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{dd}, \mathrm{J}=13.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.91$ (br s, 9H), 0.89 (br s, 9H), $0.12(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.5,150.2,140.3,102.2,91.0,81.2,75.0,71.1,50.9,25.71$, 25.68, 17.94, 17.89, -4.4, -4.6, -5.0, -5.1; MS (FAB) m/z $498.2575\left(\mathrm{MH}^{+}\left[\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{2}\right]=498.2568\right)$.

5'-Amino- $\mathbf{2}^{\mathbf{\prime}}, \mathbf{3}^{\prime}$-bis-O-(tert-butyldimethylsilyl)-5'-deoxyadenosine (17). Procedure C $\left[\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}), 1,3\right.$-propanedithiol ($0.80 \mathrm{~mL}, 0.86 \mathrm{~g}, 8.0 \mathrm{mmol}$), 15 ($294 \mathrm{mg}, 0.564 \mathrm{mmol}$), THF/ EtOH (1:1, 2 mL), 36 h , chromatography (SSA)] gave 17 (249 $\mathrm{mg}, 84 \%$) with $\mathrm{mp} 205-208{ }^{\circ} \mathrm{C}$ dec: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ $8.41(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 5.86(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97$ (dd, J $=7.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.00-3.92 (m, 1H), $3.47(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.98-2.92(\mathrm{~m}, 2 \mathrm{H}), 0.90$ (br s, 9H), 0.67 (br s, 9H), 0.11, 0.09, -0.13, $-0.50(4 \times \mathrm{s}, 4 \times$ 3H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d 6) $\delta 156.3,152.6,149.4,140.8,119.7$, 87.4, 86.3, 73.5, 73.0, 42.8, 25.7, 25.4, 17.8, 17.4, -4.7, -4.8, -5.8; MS (FAB) m/z $495.2921\left(\mathrm{MH}^{+}\left[\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Si}_{2}\right]=\right.$ 495.2935). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Si}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.36$; H , 8.76; N, 15.70. Found: C, 49.20; H, 8.11; N; 15.81.

5'-Amino- $\mathbf{2}^{\prime}$, $\mathbf{3}^{\prime}$-bis-0-(tert-butyldimethylsilyl)-5'-deoxyuridine (18). Procedure $\mathrm{C}\left[\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{~mL}), 1,3\right.$-propanedithiol $(0.30 \mathrm{~mL}, 0.32 \mathrm{~g}, 3.0 \mathrm{mmol}), 16(250 \mathrm{mg}, 0.502 \mathrm{mmol})$, EtOH $(2 \mathrm{~mL}), 18 \mathrm{~h}$, chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$)] gave 18 ($164 \mathrm{mg}, 69 \%$) as a white solid: $\mathrm{mp} \sim 198{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.85(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.69(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ ("t", J $=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.07-4.02$ $(\mathrm{m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, \mathrm{J}=5.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{J}=14.0,3.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.90 (dd, J = 13.4, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 0.92 (br s, 9 H), 0.91 (br s, 9H), $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.086(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $163.5,150.2,141.2,102.0,91.3,84.7,75.2,71.7,42.4,25.8,25.7$, 18.0, 17.9, -4.4, -4.7, -4.9; MS (FAB) m/z $472.2675\left(\mathrm{MH}^{+}\right.$ $\left.\left[\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}_{2}\right]=472.2663\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}_{2}$: C, 53.47; H, 8.76; N, 8.91. Found: C, 53.79; H, 8.61; N, 9.02.

3',5'-Bis-O-(tert-butyldimethylsilyl)-2'-O-methyladenosine (21). A solution of 19 ($500 \mathrm{mg}, 1.78 \mathrm{mmol}$), TBDMSCI ($590 \mathrm{mg}, 3.91 \mathrm{mmol}$), and imidazole ($400 \mathrm{mg}, 5.88 \mathrm{mmol}$) in dried pyridine (5 mL) was stirred for 8 h at $65^{\circ} \mathrm{C}$ (under N_{2}). TBDMSCI ($178 \mathrm{mg}, 1.18 \mathrm{mmol}$) was added, and stirring was continued until reaction was complete (TLC, 4 h). Volatiles were evaporated, and the residue was partitioned $\left(\mathrm{NaHCO}_{3} /\right.$ $\left.\mathrm{H}_{2} \mathrm{O} / / \mathrm{CHCl}_{3}\right)$. The aqueous layer was extracted $\left(\mathrm{CHCl}_{3}, 2 \times\right)$, and the combined organic phase was washed (brine), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and filtered. Volatiles were evaporated, and the residue was chromatographed (EtOAc) to give 21 (846 mg , 93%) with $\mathrm{mp} 100-103^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\delta 8.35$ ($\mathrm{s}, 1 \mathrm{H}$), 8.19 (s , $1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.54(\mathrm{t}, \mathrm{J}=4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dd}, \mathrm{J}=11.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (dd, J = 11.2, 2.4 Hz, 1H), 3.49 (s, 3H), 0.93 (s, 9H), 0.92 ($\mathrm{s}, 9 \mathrm{H}$), $0.11(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 156.0,152.9,149.3,138.8$, $119.9,86.4,84.5,83.6,69.4,61.5,58.2,25.7,25.5,18.1,17.8$, $-4.9,-5.2,-5.7,-5.8 ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 510.2930\left(\mathrm{MH}^{+}\right.$ $\left.\left[\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}\right]=510.2932\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}$: C, 54.19 ; H, 8.50 ; N, 13.74. Found: C, 54.37 ; H, 8.40; N, 13.90 .

3',5'-Bis-O-(tert-butyldimethylsilyl)-2'0-methyl-5-methyluridine (22). A solution of 20 ($200 \mathrm{mg}, 0.735 \mathrm{mmol}$), TBDMSCI ($277 \mathrm{mg}, 1.84 \mathrm{mmol}$), and imidazole ($165 \mathrm{mg}, 2.42$
$\mathrm{mmol})$ in dried pyridine (2 mL) was stirred for 5.5 h at $70^{\circ} \mathrm{C}$ (under N_{2}). Volatiles were evaporated, and the residue was partitioned $\left(\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O} / / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and volatiles were evaporated. The residue was chromatographed (EtOAc/hexanes, $7: 3$) to give 22 ($340 \mathrm{mg}, 92 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.29$ (br s, 1H), 7.48 ($\mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}$, 1H), $6.01(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-$ $3.93(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=11.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (" t ", $\mathrm{J}=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$, 0.91, (s, 9H) , 0.134, 0.127, 0.11, $0.09(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.4,150.5,135.3,110.6,87.0,84.2,83.5,69.1,61.5,58.0$, $25.8,25.5,18.3,17.9,12.3,-4.9,-5.1,-5.5,-5.7$; MS (CI) $\mathrm{m} / \mathrm{z} 501.2805\left(\mathrm{MH}^{+}\left[\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}\right]=501.2816\right)$.

3'-0-(tert-Butyldimethylsilyl)-5'-chloro-5'-deoxy-2'-0methyladenosine (23). Procedure A [21 ($831 \mathrm{mg}, 1.63 \mathrm{mmol}$), TFA/H2O (9:1, 4 mL), $\sim 45 \mathrm{~min}$, partitioned ($\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O} / /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), aqueous layer extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \times\right)$, combined organic dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, chromatography ($5 \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2}-$ Cl_{2})] gave 3'-O-TBDMS-2'-O-methylAdo ($383 \mathrm{mg}, 60 \%$): ${ }^{13} \mathrm{H}$ NMR (500 MHz) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{dd}, \mathrm{J}=11.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.79 (br s, 2H), 4.62 (dd, $\mathrm{J}=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H})$, 3.95 (dt, J = 13.0, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (dd, J $=12.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (s, 3H), 0.94 (br s, 9H), $0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 156.4,152.2,148.3,140.7,121.0,89.4,89.3,82.1,71.3,62.6$, 58.1, 25.5, 17.9, -4.9, -5.1; MS (FAB) m/z $396.2082\left(\mathrm{MH}^{+}\right.$ $\left[\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}\right]=396.2067$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}$: C, 51.62; H, 7.39; N, 17.71. Found: C, 51.85; H, 7.15; N, 17.84.

This material ($368 \mathrm{mg}, 0.930 \mathrm{mmol}$) was dissolved in dried pyridine, and volatiles were evaporated ($\sim 5 \mathrm{~mL}, 2 \times$). The residue was dissolved in dried pyridine (4 mL) and cooled (0 ${ }^{\circ} \mathrm{C}$) under $\mathrm{N}_{2} . \mathrm{SOCl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{M}$; $1.6 \mathrm{~mL}, 3.2 \mathrm{mmol}$) was added, and stirring was continued at ambient temperature until reaction was complete (TLC, $\sim 20 \mathrm{~h}$). Volatiles were evaporated, and the residue was partitioned $\left(\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O} / /\right.$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and vol atiles were evaporated. Chromatography ($5 \rightarrow$ $8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 23 ($278 \mathrm{mg}, 72 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.35$ (s, $1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{t}$, $\mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.05(\mathrm{~m}, 1 \mathrm{H})$, 4.01 (dd, J = 11.8, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (dd, J $=12.0,4.0 \mathrm{~Hz}$, 1H), 3.47 (s, 3H), $0.94(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 156.0$, 153.0, 149.4, 139.7, 120.4, 87.7, 83.4, 82.0, 70.9, 58.5, 43.5, 25.6, 18.0, $-4.9,-5.0 ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 414.1739\left(\mathrm{MH}^{+}\left[\mathrm{C}_{17} \mathrm{H}_{29}-\right.\right.$ $\left.{ }^{35} \mathrm{CIN}_{5} \mathrm{O}_{3} \mathrm{Si}\right]=414.1728$).

3'-O-(tert-Butyldimethylsilyl)-5'-chloro-5'-deoxy-2'0-methyl-5-methyluridine (24). Procedure A [22 (270 mg, $0.540 \mathrm{mmol})$, TFA/ $\mathrm{H}_{2} \mathrm{O}(9: 1,5 \mathrm{~mL}), \sim 15 \mathrm{~min}$, partitioned ($\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O} / / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), aqueous layer extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \times\right.$) and combined organic dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, chromatography (EtOAcl hexanes, 7:3)] gave 3'-O-TBDMS-2'-O-methyl-5-methylUrd ($150 \mathrm{mg}, 72 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.26$ (br s, 1H), 7.36 (d, J $=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.54(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-$ 4.03 (m, 2H) , 4.00-3.92 (m, 1H), 3.78-3.68 (m, 1H), 3.67 (s, $3 \mathrm{H}), 2.92(\mathrm{dd}, \mathrm{J}=7.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, 0.92 (br s, 9H), $0.12(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.2$, $150.5,138.5,110.8,91.8,85.8,81.9,69.8,61.3,58.3,25.6,18.0$, 12.3, -4.9, -5.0; MS (CI) m/z $387.1938\left(\mathrm{MH}^{+}\left[\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}-\right.\right.$ $\mathrm{Si}]=387.1951$).

This material ($90 \mathrm{mg}, 0.23 \mathrm{mmol}$), dried pyridine (3 mL), and $\mathrm{MsCl}(0.15 \mathrm{~mL}, 0.22 \mathrm{~g}, 1.9 \mathrm{mmol})$ were added to a dried flask, and the solution was stirred for 6 h at $90^{\circ} \mathrm{C}$ (under N_{2}). Volatiles were evaporated, the residue was partitioned (NaH $\mathrm{CO}_{3} / \mathrm{H}_{2} \mathrm{O} / / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), and the aqueous layer was extracted ($\mathrm{CH}_{2}-$ $\left.\mathrm{Cl}_{2}, 2 \times\right)$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. Volatiles were evaporated, and the residue was chromatographed ($40 \rightarrow 50 \%$ EtOAc/hexanes) to give 24 (78 $\mathrm{mg}, 84 \%):{ }^{1} \mathrm{H}$ NMR $\delta 8.74$ (br s, 1H), 7.55 (d, J $=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.84(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ ("d", J $=2.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.00 (dd, $\mathrm{J}=13.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~d}$, $\mathrm{j}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.3$, $150.3,135.9,110.8,89.0,83.0,81.6,70.1,58.4,43.7,25.5,17.9$, 12.5, -4.8, -5.1; MS (CI) m/z $405.1598\left(\mathrm{MH}^{+}\left[\mathrm{C}_{17} \mathrm{H}_{30}{ }^{35} \mathrm{CIN}_{2} \mathrm{O}_{5}\right.\right.$ $\mathrm{Si}]=405.1613$).

5'-Azido-3'-O-(tert-butyldimethylsilyl)-5'-deoxy-2'-0methyladenosine (25). A solution of 23 ($117 \mathrm{mg}, 0.283 \mathrm{mmol}$) and $\mathrm{NaN}_{3}(73 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dried DMF (2 mL) was stirred for 5 h at $105^{\circ} \mathrm{C}$. Volatiles were evaporated, and the residue was chromatographed ($5 \rightarrow 8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 25 (117 $\mathrm{mg}, 98 \%):{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 8.36$ (s, 1H), $8.04(\mathrm{~s}, 1 \mathrm{H})$, $6.05(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, \mathrm{J}=10.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ $(d d, \mathrm{~J}=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, \mathrm{J}=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.49 (s, 3H), 0.94 (br s, 9H), $0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 155.9,153.1,149.4,139.5,120.3,87.6,82.50,82.46,70.9,58.6$, 51.2, 25.6, 18.0, -4.8, -5.1; MS (FAB) m/z $421.2142\left(\mathrm{MH}^{+}\right.$ $\left[\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{Si}\right]=421.2132$).
5'-Azido-3'-O-(tert-butyldimethylsilyl)-5'-deoxy-2'-0-methyl-5-methyluridine (26). A solution of $\mathbf{2 4}$ ($78 \mathrm{mg}, 0.19$ mmol) and $\mathrm{LiN}_{3}(40 \mathrm{mg}, 0.82 \mathrm{mmol})$ in dried DMF (2.0 mL) was stirred for 4 h at $110{ }^{\circ} \mathrm{C}$ (under N_{2}). Volatiles were evaporated, the residue was partitioned ($\mathrm{EtOAc} / / \mathrm{NaHCO}_{3} /$ $\mathrm{H}_{2} \mathrm{O}$), and the aqueous layer was extracted (EtOAc, $2 \times$). The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and volatiles were evaporated. Chromatography of the residue (EtOAc/hexanes, 1:1) gave 26 ($75 \mathrm{mg}, 96 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.71$ (br s, 1H), $7.44(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16 (dd, J $=7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (dt, J $=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (dd, J $=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (dd, J $=5.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (dd, J $=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 ($\mathrm{s}, 3 \mathrm{H}$), $1.95(\mathrm{~d}, \mathrm{~J}=1.4$ $\mathrm{Hz}, 3 \mathrm{H}$), 0.91 (br s, 9H), 0.11 (br s, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 164.3$, $150.3,135.8,111.0,89.1,83.1,81.3,70.0,58.4,50.7,25.5,18.0$, 12.6, -4.8, -5.1; MS (CI) m/z $412.2003\left(\mathrm{MH}^{+}\left[\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{5}{ }^{-}\right.\right.$ $\mathrm{Si}]=412.2016$).
5'-Azido-5'-deoxy-2'-O-methyladenosine (27). TBAF/ THF ($1.0 \mathrm{M} ; 0.100 \mathrm{~mL}, 0.100 \mathrm{mmol}$) was added to a solution of $25(25 \mathrm{mg}, 0.059 \mathrm{mmol})$ in THF (0.5 mL), and stirring was continued for 2 h . Volatiles were evaporated, and the residue was chromatographed ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 27 (16 mg , 88\%): ${ }^{1} \mathrm{H}$ NMR (DMSO^{2} - $\mathrm{d}_{6} \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 6.03(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.53(\mathrm{t}, \mathrm{J}=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{ddd}, \mathrm{J}=6.8,3.7,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=13.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, \mathrm{J}=13.0$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DM SO-d ${ }_{6}$) $\delta 156.3$, 152.9, 149.4, 140.0, 119.3, 85.7, 83.6, 81.6, 69.5, 57.7, 51.6; MS (FAB) $\mathrm{m} / \mathrm{z} 307.1264\left(\mathrm{MH}^{+}\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{8} \mathrm{O}_{3}\right]=307.1267\right)$.
5'-Azido-5'-deoxy-2'-0-methyl-5-methyluridine (28). TBAF/THF ($1.0 \mathrm{M} ; 0.250 \mathrm{~mL}, 0.250 \mathrm{mmol}$) was added to a solution of $26(75 \mathrm{mg}, 0.18 \mathrm{mmol})$ in THF (1.0 mL), and stirring was continued for 3 h . MeOH (4 mL) and Dowex 1-X2 (${ }^{-} \mathrm{OH}$) resin were added, and the suspension was stirred until the supernatant was UV transparent. The mixture was filtered, the resin was washed ($\mathrm{MeOH}, 4 \times, \mathrm{AcOH} / \mathrm{MeOH}$), and the combined filtrate was evaporated to give $\mathbf{2 8 (5 0 \mathrm { mg } , 9 3 \%) \text { : } { } ^ { 1 } \mathrm { H }}$ NMR (DMSO- d_{6}) $\delta 11.40(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ $(\mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, \mathrm{J}=$ $10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.31 (s, 3H), 1.77 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d 6) δ 163.9, 150.7, 136.5, 110.1, 86.9, 82.5, 81.2, 69.2, 57.7, 51.6, 12.1; MS (FAB) $\mathrm{m} / \mathrm{z} 298.1168\left(\mathrm{MH}^{+}\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5}\right]=298.1151\right)$.

5'-Amino-5'-deoxy-2'-O-methyladenosine (29). Procedure B [27 (380 mg, 1.24 mmol$), 10 \% \mathrm{Pd}-\mathrm{C}(102 \mathrm{mg}), \mathrm{H}_{2}(30$ psi), EtOH (20 mL), overnight, filter cake washed (EtOH, dilute $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}$), recrystallized (EtOH)] gave 29 (300 mg , 86\%): mp 200-202 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 8.43$ (s, 1H), $8.16(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{br}$ $\mathrm{s}, 3 \mathrm{H}), 4.47(\mathrm{dd}, \mathrm{J}=6.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=4.6,3.4 \mathrm{~Hz}$, 1 H), 3.88 ("q", J $=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 ($\mathrm{s}, 3 \mathrm{H}$), 2.84 (dd, J = 13.4, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dd, J $=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.70(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }^{2}$) δ 156.3, $152.9,149.5,140.2,119.4,86.9$, 85.4, 82.0, 69.2, 57.5, 43.8; MS (FAB) m/z 303.1164 (MNa^{+} $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Na}\right.$] = 303.1182. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{3}: \mathrm{C}$, 47.14; H, 5.75; N, 29.98. Found: C, 47.32; H, 5.54; N, 30.21.

5'Amino-5'-deoxy-2-O-methyl-5-methyluridine (30). Procedure B [28 (174 mg, 0.585 mmol), 10\% Pd-C (83 mg), H_{2} (30 psi), EtOH (25 mL), overnight, filter cake washed (EtOH, dilute $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}$), recrystallized (EtOH)] gave 30 (135 mg , 85%): mp $140-143^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 7.76(\mathrm{~s}, 1 \mathrm{H})$, $5.82(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 4.11$ ("t", J $=4.5 \mathrm{~Hz}$,

1 H), 3.84 (" t ", J $=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (" d^{\prime} ", J $=4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (s, 3H), 2.78 (br s, 2H), 1.78 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) δ 164.0, 150.9, 136.7, 109.9, 86.0, 82.0, 69.0, 57.6, 43.0, 12.2; MS (FAB) m/z $316.0903\left\{\left(\mathrm{MNa}_{2}-\mathrm{H}\right)^{+}\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}_{2}\right]=\right.$ 316.0885\}.

1-[3-O-Benzoyl-2,5-bis-O-(tert-butyldimethylsilyl)- β-D-ribofuranosyl]-3-N-(benzoyl)uracil (32). Benzoyl chloride ($1.0 \mathrm{~mL}, 1.2 \mathrm{~g}, 8.6 \mathrm{mmol}$) was added to a solution of 31 (1.03 $\mathrm{g}, 2.18 \mathrm{mmol}$) in dried pyridine (5 mL), and the solution was stirred overnight at ambient temperature (under N_{2}). EtOAc and $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}$ were added, and the aqueous layer was extracted (EtOAc, 2×). The combined organic phase was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and filtered. Volatiles were evaporated, and the residue was chromatographed ($10 \rightarrow 20 \%$ EtOAc/hexanes) to give 32 ($1.42 \mathrm{~g}, 96 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.10-7.95$ (m, 5H), 7.66$7.41(\mathrm{~m}, 6 \mathrm{H}), 6.17(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.40(\mathrm{dd}, \mathrm{J}=4.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, \mathrm{J}=12.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (d, J = $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 168.4,165.6,162.0$, 149.3, 139.6, 135.0, 133.5, 131.4, 130.4, 129.7, 129.2, 129.0, 128.4, 128.3, 102.6, 88.3, 83.1, 74.8, 72.9, 62.9, 25.9, 25.3, 18.3, 17.7, -5.18, -5.23, -5.6; MS (FAB) m/z $681.3020\left(\mathrm{MH}^{+}\right.$ $\left[\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2}\right]=681.3027$).

1-[3-O-Benzoyl-2-O-(tert-butyldimethylsilyl)- β-d-ribo-furanosyl]-3-N-(benzoyl)uracil (33). Procedure A [32 (1.42 g, 2.09 mmol), $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ TFA/ $\mathrm{H}_{2} \mathrm{O}$ (20:9:1, 15 mL), ambient temperature, 45 min , volatiles evaporated, chromatography ($40 \rightarrow 60 \%$ EtOAc/hexanes)] gave 33 ($949 \mathrm{mg}, 81 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.09-7.86(\mathrm{~m}, 5 \mathrm{H}), 7.71-7.42(\mathrm{~m}, 6 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, \mathrm{J}=4.9,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.74(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.82(\mathrm{~m}, 2 \mathrm{H}), 2.80$ ("t"", J $=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ 168.4, 165.8, 162.1, 149.4, 141.2, 135.2, 133.5, 131.2, 130.4, 129.7, 129.2, 129.1, 128.4, 102.5, 90.9, 83.1, 73.6, 72.7, 61.6, 25.4, 17.7, -5.16, -5.24; MS (FAB) m/z 567.2147 $\left(\mathrm{MH}^{+}\left[\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}\right]=567.2163\right)$.

1-[3-0-Benzoyl-2-O-(tert-butyldimethylsilyl)-5-chloro-5-deoxy- β-d-ribofuranosyl]-3-N-(benzoyl)uracil (34). SOCl_{2} $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{M} ; 2.2 \mathrm{~mL}, 4.4 \mathrm{mmol})$ was added to a stirred solution of $33(700 \mathrm{mg}, 1.24 \mathrm{mmol})$ in dried pyridine (14 mL) at $0{ }^{\circ} \mathrm{C}$ (under N_{2}), and stirring was continued overnight at ambient temperature. Vol atiles were evaporated, the residue was partitioned ($\mathrm{EtOAc} / \mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}$), and the organic layer was washed ($\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}$ and brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. Volatiles were evaporated, and the residue was chromatographed (40% EtOAc/hexanes) to give 34 (505 mg , 70%): ${ }^{1} \mathrm{H}$ NMR $\delta 8.10$ ($\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.96 (d , J $=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, \mathrm{J}=5.4,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60-4.51(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.77$ (br s, $9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 168.3,165.7,161.8$, 149.4, 139.3, 135.2, 133.8, 131.4, 130.5, 129.88, 129.17, 129.0, 128.6, 103.3, 88.5, 81.0, 73.7, 72.7, 44.8, 25.3, 17.7, -5.3; MS (FAB) m/z 585.1807 (MH $\left.{ }^{+}\left[\mathrm{C}_{29} \mathrm{H}_{34}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{7} \mathrm{Si}\right]=585.1824\right)$.

5'-Azido-3'0-benzoyl-2-0-(tert-butyldimethylsilyl)-5'deoxyuridine (35). A stirred solution of 34 ($342 \mathrm{mg}, 0.584$ mmol) and $\mathrm{LiN}_{3}(144 \mathrm{mg}, 2.94 \mathrm{mmol})$ in dried DMF (3 mL) was heated for 2 h at $110^{\circ} \mathrm{C}$. Volatiles were evaporated (~ 60 ${ }^{\circ} \mathrm{C}$), and the residue was chromatographed ($30 \rightarrow 40 \% \mathrm{EtOACl}$ hexanes) to give 35 ($231 \mathrm{mg}, 81 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.08$ (br s, 1H), $8.07(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.62-7.43(\mathrm{~m}, 4 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50-4.40(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=13.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dd, $\mathrm{J}=13.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 0.027(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ 165.8, 163.1, 150.4, 139.7, 133.7, 129.9, 129.0, 128.6, 103.3, 89.5, 80.1, 73.5, 72.3, 51.9, 25.3, 17.7, -5.2, -5.4; MS (FAB) m/z $488.1964\left(\mathrm{MH}^{+}\left[\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}\right]=488.1965\right)$.

5'-Amino-3'-O-benzoyl-2-O-(tert-butyldimethylsilyl)-5'deoxyuridine (36). $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($190 \mathrm{mg}, 0.842 \mathrm{mmol}$) was added to a cold ($\sim 0{ }^{\circ} \mathrm{C}$) solution of $35(98 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$, and stirring was continued overnight at ambient temperature. Volatiles were evaporated, and the residue was chromatographed ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 36 ($48 \mathrm{mg}, 52 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.07$ (d, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.91 (d,
$\mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 5.90$ $(\mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.40-2.5(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 0.77(\mathrm{~s}$, $9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 165.9,163.4,150.4$, $140.9,133.5,129.9,129.3,128.5,102.7,90.8,73.8,72.3,29.6$, 25.4, 17.7-5.2, -5.3; MS (FAB) m/z 462.2051 (MH ${ }^{+}\left[\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}-\right.$ $\mathrm{Si}]=462.2060$.

2,5'-Bis-O-(tert-butyldimethylsilyl)-3'-(carboxymethyl)-3'-deoxyadenosine (37). Procedure D [NaOH ($500 \mathrm{mg}, 12.5$ $\mathrm{mmol}), 5(200 \mathrm{mg}, 0.353 \mathrm{mmol}), \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(9: 1,10 \mathrm{~mL}), 3 \mathrm{~h}$, $\mathrm{pH} \sim 2\left(0.5 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}\right)$, (EtOAc/brine), chromatography (3% $\left.\mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$] gave 37 ($139 \mathrm{mg}, 73 \%$) as a solid foam: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{\text {) }} \delta 12.4$ (br s, 1H), $8.35(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H})$, 7.33 (br s, 2H), 5.92 (s, 1H), 4.58 (d, J $=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03$3.96(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=11.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.60(\mathrm{~m}$, $1 \mathrm{H}), 2.50-2.36(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 18 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, $6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 173.6,156.2,152.8$, 148.9, 138.1, 119.2, 89.9, 83.8, 77.5, 62.3, 37.6, 29.4, 25.9, 25.7, 18.1, 17.7, -4.7, -5.5, -5.58, -5.63; MS (FAB) m/z 538.2870 $\left(\mathrm{MH}^{+}\left[\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{2}\right]=538.2881\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5}$ Si_{2} : C, $53.60 ; \mathrm{H}, 8.06$; $\mathrm{N}, 13.02$. Found: C, $53.39 ; \mathrm{H}, 7.85 ; \mathrm{N}$, 12.78.

2,5'-Bis-0-(tert-butyldimethylsilyl)-3'-(carboxymethyl)-3'-deoxyuridine (38). Procedure D $[\mathrm{NaOH}$ ($529 \mathrm{mg}, 13.2$ mmol), 6 ($306 \mathrm{mg}, 0.564 \mathrm{mmol}$), $\mathrm{MeOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ ($4: 2: 1,3.5$ mL), $1 \mathrm{~h}, \mathrm{pH} \sim 2\left(0.5 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}\right)$, (EtOAc/brine), chromatography (EtOAc)] gave 38 ($256 \mathrm{mg}, 88 \%$) as a solid foam: ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 8.91$ ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 8.21 (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.72(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, \mathrm{J}=16.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.52(\mathrm{~m}, 1 \mathrm{H})$, 2.30 (dd, J = 16.8, 4.3 Hz, 1H), $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.25$ (s, 3H), $0.13(\mathrm{~s}, 6 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 176.9, 164.9, 150.6, 141.0, 101.2, 91.4, 84.5, 61.1, 36.7, 28.9, 25.8, 25.7, 18.3, 17.9, -4.6, -5.7, -5.9; MS (FAB) m/z $515.2597\left(\mathrm{MH}^{+}\right.$ $\left[\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}\right]=515.2609$).
$\mathbf{2}^{\prime}, \mathbf{5}^{\prime}$-Bis-O-(tert-butyldimethylsilyl)-3'-deoxy-3'-[[(4-nitrophenoxy)carbonyl]methyl]adenosine (39). A solution of 37 ($500 \mathrm{mg}, 0.930 \mathrm{mmol}$), 4-nitrophenol ($190 \mathrm{mg}, 1.37 \mathrm{mmol}$), DCC ($280 \mathrm{mg}, 1.36 \mathrm{mmol}$), and 1-hydroxybenzotriazole (63 mg , 0.47 mmol) in dried DMF (10 mL) was stirred for 36 h at ambient temperature (under N_{2}). Volatiles were evaporated, and the residue was suspended $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and filtered (Celite). The filter cake was washed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and the combined filtrate was evaporated. The residue was chromatographed ($30 \rightarrow 50 \%$ EtOAc/hexanes) to give 39 ($441 \mathrm{mg}, 72 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.37$ (s, $1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.84$ ("dd", J = 9.4, 2.4 Hz, 1H), 3.09-2.84 (m, 2H), 2.70 (dd, J $=15.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 0.95 (br s, 18 H), 0.24, $0.15,0.14,0.08(4 \times \mathrm{s}, 4 \times 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 169.9,155.4,154.1$, 149.4, 149.3, 145.9, 140.6, 131.8, 125.8, 122.6, 120.2, 91.4, 84.7, $69.6,62.7,38.4,30.1,26.5,26.3,19.0,18.5,1.5,-3.9,-4.8$, -5.0 ; MS (FAB) m/z $659.3046\left(\mathrm{MH}^{+}\left[\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{Si}_{2}\right]=\right.$ 659.3045).

5'-Azido-2'-0-(tert-butyldimethylsilyl)-3',5'-dideoxy-3'[(ethoxycarbonyl)methyl]uridine (40). Method A. MsCl ($0.10 \mathrm{~mL}, 148 \mathrm{mg}, 1.29 \mathrm{mmol}$) was added to a cold ($\sim 0{ }^{\circ} \mathrm{C}$) solution of $8(295 \mathrm{mg}, 0.688 \mathrm{mmol})$ in dried pyridine (2 mL) and stirred for 3 h at $\sim 0{ }^{\circ} \mathrm{C}$ (under N_{2}). Volatiles were evaporated, and the residue was chromatographed ($5 \% \mathrm{MeOH}$ / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 2'-O-TBDMS-3'-deoxy-3'-[(ethoxycarbonyl)-methyl]-5'-O-methanesulfonylUrd ($289 \mathrm{mg}, 83 \%$) as a white solid: mp 120-123 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, \mathrm{J}=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.60$ (dd, J $=11.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}$, $\mathrm{J}=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, 2H), $3.10(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.26$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 171.4, 163.7, 150.3, 139.3, 101.7, 92.0, 81.3, 77.1, 67.4, $60.9,38.3,37.6,29.2,25.6,17.9,14.0,-4.5,-5.8$; MS (FAB) $\mathrm{m} / \mathrm{z} 507.1824\left(\mathrm{MH}^{+}\left[\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O} 9 \mathrm{SSi}\right]=507.1833\right)$.

A solution of this material ($260 \mathrm{mg}, 0.513 \mathrm{mmol}$) and LiN_{3} $(92 \mathrm{mg}, 1.9 \mathrm{mmol})$ in dried DMF (2 mL) was stirred for 5.5 h at $97{ }^{\circ} \mathrm{C}$ (under N_{2}). Volatiles were evaporated, the residue
was partitioned $\left(\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O} / / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and the aqueous layer was extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \times\right)$. The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, volatiles were evaporated, and the residue was chromatographed (EtOAc/hexanes, 1:1) to give 40 (214 mg , 92%) as a solid foam: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 9.19$ (br s, 1 H), 7.77 (d, J $=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.76 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.71 (s, 1 H), $4.45(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11$ (dd, J = 6.6, 3.3 Hz, 1H), 3.87 (dd, J = 13.7, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 (dd, J $=13.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (dd, J $=16.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47-2.38 (m, 1H), 2.31 (dd, J = 16.8, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.27 (t, $\mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 171.8,163.5,150.4,139.7,102.2,91.9,82.1$, 77.7, 61.2, 51.8, 39.6, 29.8, 26.0, 18.2, 14.4, -4.3, -5.4 ; MS (FAB) m/z $454.2123\left(\mathrm{MH}^{+}\left[\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}\right]=454.2122\right)$.

Method B. A solution of $\mathbf{8}(108 \mathrm{mg}, 0.252 \mathrm{mmol}), \mathrm{I}_{2}(83 \mathrm{mg}$, 0.33 mmol), and $\mathrm{Ph}_{3} \mathrm{P}(86 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dried pyridine (2 mL) was stirred for 12 h at ambient temperature. Volatiles were evaporated, the residue was partitioned $\left(\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O} / /\right.$ $\left.\mathrm{CHCl}_{3}\right)$, and the organic phase was washed $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}\right)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Volatiles were evaporated, and the residue was chromatographed (EtOAc/hexanes, 2:1) to give 2'-O-TBDMS-3',5'-dideoxy-3'-[(ethoxycarbonyl)methyl]-5'-iodoU rd (101 mg, 74%) as a glass: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 9.50$ (br s, 1H), 7.70 (d, $\mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53$ (dd, J = 5.1, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (ddd, J $=8.8,5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (dd, J $=11.6,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36(\mathrm{dd}, \mathrm{J}=11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, \mathrm{J}=16.8,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, \mathrm{J}=16.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H})$, $1.27(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta 171.8,163.7,150.4,140.3,102.4,91.6$, 81.7, 77.7, 61.2, 44.3, 29.9, 25.9, 18.1, 14.3, 7.2, -4.4, -5.6; MS (FAB) m/z 539.1073 ($\left.\mathrm{MH}^{+}\left[\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}\right]=539.1074\right)$.
A sol ution of this material ($101 \mathrm{mg}, 0.188 \mathrm{mmol}^{2}$) and NaN_{3} $(37 \mathrm{mg}, 0.57 \mathrm{mmol})$ in dried DMF (3.5 mL) was stirred for 24 h at $65^{\circ} \mathrm{C}$. Volatiles were evaporated ($\sim 60^{\circ} \mathrm{C}$), the residue was partitioned ($\mathrm{EtOAc} / \mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}$), and the organic layer was washed $\left(\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}\right)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Volatiles were evaporated to give $\mathbf{4 0}$ ($85 \mathrm{mg}, 99 \%$) as a solid foam ($\sim 95 \%,{ }^{1} \mathrm{H}$ NMR).

5'-Azido-2-0-(tert-butyldimethylsilyl)-3'-(carboxymeth-yl)-3', 5^{\prime}-dideoxyuridine (41). Procedure D $[\mathrm{NaOH}(43 \mathrm{mg}$, $1.1 \mathrm{mmol}), 40(85 \mathrm{mg}, 0.19 \mathrm{mmol}), \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(4: 1,2.1 \mathrm{~mL}), 3$ h, $\left.\mathrm{pH} \sim 4\left(4 \% \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}\right)\right]$. The precipitate was filtered, washed (cold $\mathrm{H}_{2} \mathrm{O}$), and dried (vacuum) to give 41 ($62 \mathrm{mg}, 77 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 9.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.80(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{dt}, \mathrm{J}=9.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, \mathrm{J}=13.4,2.6 \mathrm{~Hz}$, 1 H), 3.61 (dd, J = 14.0, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (dd, J = 16.4, 8.3 $\mathrm{Hz}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=16.5,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) δ 176.3, 164.4, 150.5, 140.4, 102.1, 92.4, 82.2, 77.6, 51.7, 39.6, 29.9, 26.0, 18.2, -4.3, -5.4; MS (FAB) m/z 448.1610 (MNa^{+} $\left[\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{SiNa}\right]=448.1628$).

5'-Amino-2'-0-(tert-butyldimethylsilyl)-3',5'-dideoxy-3'[(ethoxycarbonyl)methyl]uridine (42). Procedure C $\left[\mathrm{Et}_{3} \mathrm{~N}\right.$ (0.95 mL), 1,3-propanedithiol ($0.94 \mathrm{~mL}, 1.0 \mathrm{~g}, 9.4 \mathrm{mmol}$), 40 ($708 \mathrm{mg}, 1.56 \mathrm{mmol}$), dried EtOH (28 mL), 12 h , chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$)] gave 42 ($512 \mathrm{mg}, 77 \%$): ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 8.28(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.64(\mathrm{dd}, \mathrm{J}=16.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{dd}$, $\mathrm{J}=16.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.22(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 172.3,164.0$, $150.5,140.8,101.7,92.1,85.1,78.4,61.1,39.2,29.9,26.0,18.2$, 14.4, -4.2, -5.4; MS (FAB) m/z $428.2233\left(\mathrm{MH}^{+}\left[\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}-\right.\right.$ $\mathrm{Si}]=428.2217$).

2'-O-(tert-Butyldimethylsilyl)-3'-(carboxymethyl)-3'deoxyuridine (43). ProcedureD [NaOH ($640 \mathrm{mg}, 16.0 \mathrm{mmol}$), 8 ($774 \mathrm{mg}, 1.81 \mathrm{mmol}$), $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(5: 1,60 \mathrm{~mL}), 5 \mathrm{~h}, \mathrm{pH} \sim 2$ ($0.5 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$), chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 1:9) gave 43 ($480 \mathrm{mg}, 66 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{CO}-\mathrm{d}_{6}$) $\delta 10.04$ (br s, 1H), $8.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.06-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.50-3.31 (m, 1H), 3.00-2.81 (br s, 1H), 2.71-2.42 (m, 2H),
0.92 (br s, 9H), $0.25(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (Me2COd_{6}) δ 174.1, 164.3, 151.6, 150.6, 141.5, 101.4, 92.3, 85.8, 79.1, $60.8,38.0,26.3,18.7,-4.1,-5.4$; MS (FAB) m/z $401.1762\left(\mathrm{MH}^{+}\right.$ $\left.\left[\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\right]=401.1744\right)$.

2'-0-(tert-Butyldimethylsilyl)-3'-(carboxymethyl)-3'-deoxy-5'-0-(4,4'-dimethoxytrityl)uridine Triethylammonium Salt (44). Dried pyridine $(1.0 \mathrm{~mL})$, dried $\mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~mL})$, DMTCI ($120 \mathrm{mg}, 0.354 \mathrm{mmol}$), and $\mathbf{4 3}(70 \mathrm{mg}, 0.18 \mathrm{mmol})$ were added to a flame-dried flask, and the sol ution was stirred for 4 h at ambient temperature (under N_{2}). Volatiles were evaporated, the residue was chromatographed ($\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 5: 95$), and the product was partitioned ($\mathrm{NaHCO}_{3} /$ $\left.\mathrm{H}_{2} \mathrm{O} / / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The aqueous layer was extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \times\right)$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Volatiles were evaporated to give 44 ($90 \mathrm{mg}, 62 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.33$ (br $\mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.21(\mathrm{~m}, 9 \mathrm{H}), 6.83(\mathrm{~d}$, $\mathrm{J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}$, $\mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{~d}$, $\mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{q}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.57-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}$, $\mathrm{J}=7.3 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 176.2,163.9,158.6,150.2,144.5,140.7,135.4,135.2$, 130.1, 128.1, 127.9, 127.0, 113.2, 101.1, 92.0, 86.7, 83.5, 61.7, 55.1, 45.2, 38.5, 30.1, 25.7, 17.9, 8.4, -4.7, -5.7; MS (FAB) $\mathrm{m} / \mathrm{z} 702.2971\left[\left(\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}\right)^{+}\left[\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O} 9 \mathrm{Si}\right]=702.2973\right]$.
2-0-(tert-Butyldimethylsilyl)-3'-deoxy-5'-0-(4,4-dimeth-oxytrityl)-3'-[[(4-nitrophenoxy)carbonyl]methyl]uridine (45). A solution of 44 ($50 \mathrm{mg}, 0.062 \mathrm{mmol}$), 4-nitrophenol ($10 \mathrm{mg}, 0.072 \mathrm{mmol}$), and DCC ($15 \mathrm{mg}, 0.073 \mathrm{mmol}$) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred overnight at ambient temperature (under N_{2}). The suspension was filtered (Celite), volatiles were evaporated, and the residue was chromatographed (EtOAcl $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$) to give 45 ($31 \mathrm{mg}, 61 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 8.28$ ($\mathrm{d}, \mathrm{J}=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.51-$ $7.18(\mathrm{~m}, 12 \mathrm{H}), 6.84(\mathrm{dd}, \mathrm{J}=8.9,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.31$ (dd, J = 8.1, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.47 (d, J = $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.14-4.08$ (m, 1H), 3.90 ("d", J = $12.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3H), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 3.35 ("d", J = 13.4 Hz, 1H), 2.84-2.62 (m, 1H), 2.13 (m, 1H), 0.90 (br s, 9H), 0.25 (s, 3H), 0.08 (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\delta 169.3$, 163.5, 158.8, 155.0, 150.3, 145.4, 144.3, 140.2, 135.1, 134.9, $130.2,128.1,127.2,125.3,122.1,113.3,101.6,91.5,87.3,83.2$, 77.4, 60.8, 55.2, 37.6, 29.6, 27.3, 25.7, 17.9, -4.5, -5.8; MS (FAB) m/z $824.3220\left(\mathrm{MH}^{+}\left[\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{Si}\right]=824.3215\right)$.

2,5'-Bis-O-(tert-butyldimethylsilyl)-3'-deoxy-3-[[N-(2,3'-bis-O-(tert-butyldimethylsilyl)-5'-deoxyadenosin-5'-yl)carboxamido]methyl]adenosine (46). Procedure E [17 (100 $\mathrm{mg}, 0.202 \mathrm{mmol}$), 37 ($110 \mathrm{mg}, 0.204 \mathrm{mmol}$), DCC (50.0 mg , 0.241 mmol), dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, chromatography (MeOH / $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$)] gave 46 ($168 \mathrm{mg}, 82 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz) δ $8.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.40,8.37,8.36,7.85(4 \times \mathrm{s}, 4 \times 1 \mathrm{H}), 6.07(\mathrm{~d}$, $\mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.56$ (br s, 2H), $4.90(\mathrm{dd}, \mathrm{J}=7.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, \mathrm{J}=5.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.08$ (dd, J $=11.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=11.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.72$ (dd, J $=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (dd, J $=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 0.94 (s, 18H) $0.87,0.75,0.14(3 \times \mathrm{s}, 3 \times 9 \mathrm{H}), 0.12,0.11,0.04$, $-0.16,-0.57(5 \times \mathrm{s}, 5 \times 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ 171.5, 156.5, 155.6, 152.9, 152.5, 149.6, 148.9, 141.2, 138.9, 121.3, 119.7, 90.2, 90.0, 86.3, 85.1, 78.4, 73.4, 73.1, 63.7, 40.8, 38.9, 32.5, 25.9, 25.7, 25.6, 25.4, 18.4, 17.8, 17.6, -4.7, -4.8, -5.0, -5.2, -5.5, -5.8; MS (FAB) $\mathrm{m} / \mathrm{z} 1014.5621\left(\mathrm{MH}^{+}\left[\mathrm{C}_{46} \mathrm{H}_{84} \mathrm{~N}_{11} \mathrm{O}_{7} \mathrm{Si}_{4}\right]=1014.5632\right)$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{83} \mathrm{~N}_{11} \mathrm{O}_{7} \mathrm{Si}_{4}: \mathrm{C}, 54.46 ; \mathrm{H}, 8.25 ; \mathrm{N}, 15.19$. Found: C, 54.37; H, 8.41; N, 15.05.

2,5'-Bis-O-(tert-butyldimethylsilyl)-3'-deoxy-3-[[N-(2,3' bis-O-(tert-butyldimethylsilyl)-5'-deoxyuridin-5'-yl)carboxamido]methyl]adenosine (47). Procedure E [18 (46 mg , $0.098 \mathrm{mmol}), 37(53 \mathrm{mg}, 0.099 \mathrm{mmol})$, DCC ($25 \mathrm{mg}, 0.12 \mathrm{mmol}$), dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$, chromatography (EtOAc/hexanes, 7:3)] gave 47 ($73 \mathrm{mg}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 10.75,8.54,8.46$ $(3 \times \mathrm{s}, 3 \times 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}$, $\mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.73(\mathrm{dd}, \mathrm{J}=7.8,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (dd, J $=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (dd, J $=4.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.14(\mathrm{dt}, \mathrm{J}=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.11-$ $4.09(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, \mathrm{J}=12.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, \mathrm{J}=$
$5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{dt}, \mathrm{J}=14.5,3.1 \mathrm{~Hz}$, 1 H), 2.88 (ddd, J $=15.5,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (dd, J = 15.5, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dd, J $=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97,0.91,0.88$, $0.87(4 \times \mathrm{s}, 4 \times 9 \mathrm{H}), 0.17,0.16,0.14(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}), 0.09(\mathrm{~s}$, $6 \mathrm{H}), 0.04,0.01,-0.01(3 \times \mathrm{s}, 3 \times 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta$ 171.2, 163.6, 163.6, 155.5, 153.0, 150.9, 149.5, 143.9, 139.4, 119.4, 102.7, 96.2, 89.4, 84.9, 84.3, 78.0, 73.3, 71.8, 63.3, 41.0, $38.3,32.5,29.7,26.1,25.8,25.7,18.6,18.0,17.9,-4.6,-4.7$, $-4.8,-5.29,-5.33$; MS (FAB) m/z 991.5354 (MH ${ }^{+}\left[\mathrm{C}_{45} \mathrm{H}_{83} \mathrm{~N}_{8} \mathrm{O}_{9}-\right.$ $\left.\mathrm{Si}_{4}\right]=991.5360$). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{Si}_{4}$: C, $54.51 ; \mathrm{H}$, 8.34; N, 11.30. Found: C, 54.46 ; H, 8.08; N, 10.96.

2,5'-Bis-O-(tert-butyldimethylsilyl)-3-deoxy-3'[[NN-(2, $\mathbf{3}^{\prime}-$ bis-O-(tert-butyldimethylsilyl)-5'-deoxyuridin-5'-yl)carboxamido]methyl]uridine (48). Procedure E [38 (80 mg, $0.16 \mathrm{mmol}), 18(80 \mathrm{mg}, 0.17 \mathrm{mmol}), \mathrm{DCC}(64 \mathrm{mg}, 0.31 \mathrm{mmol})$, dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$, chromatography ($40 \rightarrow 70 \% \mathrm{EtOAc}$ hexanes)] gave 48 ($115 \mathrm{mg}, 74 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 8.88$ (br s, 1H), 8.66 (br s, 1H), $8.14(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (dd, J $=6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, \mathrm{~J}=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.24(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, \mathrm{J}=6.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (dd, J = 5.3, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.03(\mathrm{~m}$, $2 \mathrm{H}), 3.92$ (dd, J $=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=12.3,1.8 \mathrm{~Hz}$, 1 H), 3.62 (quint, J $=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.40(\mathrm{dt}, \mathrm{J}=14.3,3.6 \mathrm{~Hz}$, 1H), 2.65-2.62 (m, 1H), 2.53 (dd, J = 15.4, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (dd, J $=15.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.93,0.90,0.89,0.86(4 \times \mathrm{s}, 4 \times$ $9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.07,0.04,-0.02$ $(3 \times s, 3 \times 3 H) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.3,164.0,163.5,150.6,150.5$, $143.7,140.7,128.3,102.5,101.4,95.6,90.5,84.5,73.1,72.2$, $62.3,41.1,37.8,31.4,25.8,25.70,25.65,25.6,18.3,17.91,17.85$, 17.8, -4.65, -4.72, -4.8, -4.9, -5.0, -5.5, -5.7, -5.8; MS (FAB) m/z $968.5101\left(\mathrm{MH}^{+}\left[\mathrm{C}_{44} \mathrm{H}_{82} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Si}_{4}\right]=968.5088\right)$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{81} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Si}_{4}$: C, $54.57 ; \mathrm{H}, 8.43 ; \mathrm{N}, 7.23$. Found: C, 54.62; H, 8.18; N, 7.08 .

2',5'-Bis-O-(tert-butyldimethylsilyl)-3'-deoxy-3'-[[N-(5'-deoxyadenosin-5'-yl)carboxamido]methyl]adenosine (49). Procedure F [39 ($100 \mathrm{mg}, 0.152 \mathrm{mmol}$), 5'-amino-5'-deoxyAdo ($40 \mathrm{mg}, 0.15 \mathrm{mmol}$), pyridine (5 mL), 4 days, chromatography (SSA)] gave 49 ($77 \mathrm{mg}, 65 \%$): ${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,500 \mathrm{MHz}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{t}, \mathrm{J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H})$, $8.20(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, \mathrm{J}=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.81-3.79,3.53-$ $3.42,2.82-2.74(3 \times \mathrm{m}, 3 \times 1 \mathrm{H}), 2.49(\mathrm{dd}, \mathrm{J}=16.8,7.2 \mathrm{~Hz}$, 1H; overlap with solvent peaks), 2.30 (dd, J $=16.8,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 125 \mathrm{MHz}$) δ 170.5, 156.1, 156.0, 152.6, 152.4, 149.2, 148.8, 140.2, 137.9, 119.4, 118.9, 89.3, 87.9, 84.0, 83.2, 77.6, 72.6, 71.3, 62.8, 37.8, 30.5, 25.8, 25.6, 18.1, 17.6, -4.9, -5.5; MS (FAB) m/z $786.3919\left(\mathrm{MH}^{+}\left[\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{11} \mathrm{O}_{7^{-}}\right.\right.$ $\left.\mathrm{Si}_{2}\right]=786.3903$).
$\mathbf{2}^{2}, 5^{\prime}$-Bis-0-(tert-butyldimethylsilyl)-3'-deoxy-3 ${ }^{3}$-[[N-(5' deoxyuridin-5'-yl)carboxamidolmethyl]adenosine (50). Procedure F [39 ($10 \mathrm{mg}, 0.015 \mathrm{mmol}$), 5^{\prime}-amino-5'-deoxyUrd ($4 \mathrm{mg}, 0.02 \mathrm{mmol}$), pyridine (0.5 mL), 3 days, chromatography (SSA)] gave 50 ($8 \mathrm{mg}, 70 \%$): ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta$ 11.39, $8.38,8.20(3 \times \mathrm{s}, 3 \times 1 \mathrm{H}), 8.15(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ $(\mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, \mathrm{~J}=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, \mathrm{J}=5.0,1.5 \mathrm{~Hz}$, 1 H), 4.11 (dd, J $=10.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.87$ (dd, J $=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.49,3.23-$ 3.19, 2.80-2.77 ($3 \times \mathrm{m}, 3 \times 1 \mathrm{H}$), $2.48(\mathrm{dd}, \mathrm{J}=16.0,8.0 \mathrm{~Hz}$, 1 H), 2.30 (dd, J $=15.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d 6 , $125 \mathrm{MHz}) \delta 170.5,162.9,156.0,152.5,150.6,148.8,141.3$, 137.9, 118.9, 101.9, 89.3, 88.4, 83.9, 82.2, 77.6, 72.4, 70.9, 62.8, $41.2,37.8,30.5,25.8,25.6,18.1,17.6,-4.9,-5.5$; MS (FAB) $\mathrm{m} / \mathrm{z} 763.3649\left(\mathrm{MH}^{+}\left[\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{Si}_{2}\right]=763.3631\right)$.
$\mathbf{3}^{\prime}$-[[N-(3'O-Benzoyl-2'-O-(tert-butyldimethylsilyl)-5'-deoxyuridin-5'-yl)carboxamido]methyl]-2-0-(tert-butyl-dimethylsilyl)-5'-0-(4,4'-dimethoxytrityl)-3'-deoxyuridine (51). Procedure E [$44(88 \mathrm{mg}, 0.11 \mathrm{mmol}), 36(48 \mathrm{mg}$, $0.10 \mathrm{mmol})$, DCC ($40 \mathrm{mg}, 0.19 \mathrm{mmol}$), dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$,
chromatography ($50 \rightarrow 60 \%$ EtOAc/hexanes)] gave 51 (81 mg , 71\%): ${ }^{1} \mathrm{H}$ NMR $\delta 8.50$ (s, 1H), 8.20-8.13 (m, 2H), 8.04 ("d", $\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.17(\mathrm{~m}, 12 \mathrm{H})$, 6.85 ("d", J = $6.2 \mathrm{~Hz}, 4 \mathrm{H}$), 6.73 (br s, 1H), 5.77 (s, 1H), 5.75 (d, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.21(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.60 ("d", J $=3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.39 ($\mathrm{m}, 1 \mathrm{H}$), 4.08 (" d ", J $=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.41$ $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~s}, 9 \mathrm{H}), 0.23$, $0.09,-0.04,-0.05(4 \times \mathrm{s}, 4 \times 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ 171.2, 165.5, 163.7, 163.0, 158.7, 158.6, 150.4, 150.3, 144.4, 142.9, 140.6, 135.3, 135.0, 133.5, 130.3, 130.2, 129.8, 129.2, 128.5, 128.1, 128.0, 127.1, 113.3, 102.9, 101.4, 95.5, 91.3, 86.9, 83.3, 80.9, 73.1, 71.5, 61.7, 55.2, 41.1, 38.3, 30.6, 25.7, 25.3, 17.9, 17.6, $-4.7,-5.3,-5.3,-5.6$; MS (FAB) m/z $1168.4785\left(\mathrm{MNa}^{+}\right.$ $\left[\mathrm{C}_{60} \mathrm{H}_{75} \mathrm{~N}_{5} \mathrm{O}_{14} \mathrm{Si}_{2} \mathrm{Na}\right]=1168.4747$).

2-O-(tert-Butyldimethylsilyl)-3'-deoxy-5'-0-(4,4'-dimeth-oxytrityl)-3'-[[N-(2-O-methyl-5'-deoxyadenosin-5'-yl)carboxamido]methyl]uridine (52). Procedure F [45 (29 mg, $0.035 \mathrm{mmol}) / \mathrm{THF} / \mathrm{EtOH}(1: 1,2.0 \mathrm{~mL}), 29(12 \mathrm{mg}, 0.043 \mathrm{mmol}) /$ $\mathrm{EtOH}(1.8 \mathrm{~mL})$, 5 days, preparative $\mathrm{TLC}\left(\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH} / \mathrm{CH}_{2-}\right.$ $\left.\mathrm{Cl}_{2}, 0.5: 10: 90\right)$] gave 52 ($25 \mathrm{mg}, 74 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz) δ 9.31 (br s, 1H), 8.21 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 ($\mathrm{s}, 1 \mathrm{H}$), 7.92 (m, 1 H), $7.91(\mathrm{~s}, 1 \mathrm{H}), 7.41$ (dd, J $=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32-7.22(\mathrm{~m}$, 7H), 6.82 (dd, J $=6.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, \mathrm{J}=7.5,2.0 \mathrm{~Hz}$, 2H), 6.06 (br s, 2H), $5.84(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.27$ $(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~d}$, $\mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{ddd}, \mathrm{J}=14.5,8.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{dd}, \mathrm{J}=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73,3.71,3.32(3 \times \mathrm{s}, 3 \times 3 \mathrm{H})$, $3.32-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, \mathrm{J}=16.0,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.94$ (dd, J $=16.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 0.84 (br s, 9H), 0.22 (s, 3H), 0.06 (s, 3H); ${ }^{13} \mathrm{C}$ NMR δ 171.1, 164.2, 158.7, 156.3, $152.8,150.9,149.0,144.4,141.0,140.7,135.3,135.1,130.4$, $130.2,128.2,128.0,127.1,120.7,113.3,101.8,91.3,88.7,87.1$, 84.7, 83.5, 81.4, 78.0, 70.6, 61.5, 58.8, 55.1, 41.1, 38.0, 30.6, 25.7, 17.9, -4.8, -5.3; MS (FAB) m/z 987.4097 (MNa ${ }^{+}$ $\left[\mathrm{C}_{49} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{O}_{11} \mathrm{SiNa}\right]=987.4049$).

5'-Azido-2'-0-(tert-butyldimethylsilyl)-3'-[[N-(2, $\mathbf{3}^{\prime}$-bis-O-(tert-butyldimethylsilyl)-5'-deoxyuridin-5'-yl)carbox-amido]methyl]-3',5'-dideoxyuridine (53). Procedure E [41 $(225 \mathrm{mg}, 0.529 \mathrm{mmol}), 18(223 \mathrm{mg}, 0.473 \mathrm{mmol}), \mathrm{DCC}(118$ $\mathrm{mg}, 0.572 \mathrm{mmol}$), dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$, chromatography $\left.\left(2.5 \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$ gave 53 ($324 \mathrm{mg}, 78 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 9.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=6.9,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, 1 H), 4.74 (dd, J $=6.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40 (dd, J $=4.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=4.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (dd, J = 13.5, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72-3.61 (m, 2H), 3.39 (dt, J = $13.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (dd, J $=17.0,9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 0.92,0.91,0.86(3 \times \mathrm{s}, 3 \times 9 \mathrm{H}), 0.19,0.10,0.096$, $0.09,0.04,-0.02(6 \times \mathrm{s}, 6 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 171.4$, 163.3, 162.9, 150.7, 150.5, 144.7, 139.9, 102.9, 102.4, 97.0, 91.2, 85.3, 82.6, 78.1, 73.5, 71.8, 52.7, 41.4, 40.1, 32.4, 26.04, 25.99, 25.9, 18.3, 18.1, -4.3, -4.4, -4.7, -5.1; MS (FAB) m/z $901.4114\left(\mathrm{M} \mathrm{Na}^{+}\left[\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{Na}\right]=901.4107\right)$.
5^{\prime}-Amino-2'O-(tert-butyldimethylsilyl)-3'-[[N-(2,3'-bis-0-(tert-butyldimethylsilyl)-5'-deoxyuridin-5'-yl)carbox-amido]methyl]-3',5'-dideoxyuridine (54). Procedure B [53 ($25 \mathrm{mg}, 0.028 \mathrm{mmol}$), 10\% Pd-C (5 mg), H_{2} (5 psi), dried THF (5 mL), 8 h , chromatography (SSA)] gave 54 ($15 \mathrm{mg}, 63 \%$): ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 8.30,7.30,7.24(3 \times \mathrm{br} \mathrm{s}, 3 \times 1 \mathrm{H}), 5.76(\mathrm{~d}$, $\mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}$, $1 \mathrm{H}), 4.71$ (br s, 1H), 4.41 (br s, 1H), 4.12 (br s, 2H), 3.95 (br s, $1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H})$, 2.97 (br s, 1H), 2.55 (br s, 1H), $2.53(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ $(\mathrm{m}, 1 \mathrm{H}), 0.92,0.91,0.85(3 \times \mathrm{br} \mathrm{s}, 3 \times 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.10$ $(\mathrm{s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz) δ 172.0, 164.3, 163.8, 150.9, 150.7, 144.3, 141.7, 102.8, 101.8, 95.8, 92.4, 85.0, 84.3, 78.5, 73.3, 72.3, 42.6, 41.4, 39.9, 32.1, 30.4, 29.9, 26.04, 25.97, 25.9, 18.2, 18.2, 18.1, -4.30 , $-4.32,-4.4,-4.5,-4.7,-5.1$; MS (FAB) m/z $853.4390\left(\mathrm{MH}^{+}\right.$ $\left[\mathrm{C}_{38} \mathrm{H}_{69} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Si}_{3}\right]=853.4386$).
${ }^{5}$-Azido-2-O-(tert-butyldimethylsilyl)-3 ${ }^{3}$-[[N-(2-O-(tert-butyldimethylsilyl)-3, 5^{\prime}-dideoxy- 3^{\prime}-[(ethoxycarbonyl)-
methyl]uridin-5'-yl)carboxamido]methyl]-3',5'-dideoxyuridine (55). Procedure E [41 (447 mg, 1.05 mmol), 42 (494 $\mathrm{mg}, 1.16 \mathrm{mmol}$), DCC ($237 \mathrm{mg}, 1.15 \mathrm{mmol}$), dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5$ mL), chromatography (EtOA c/hexanes, 7:3)] gave 55 (630 mg , 72%): ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 8.84$ (br s, 1H), 8.81 (br s, 1H), $7.74(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, \mathrm{J}=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (dd, J $=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dd, J $=7.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.13$ $(\mathrm{m}, 1 \mathrm{H}), 4.14(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dd}$, $\mathrm{J}=13.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (ddd, J = 14.5, $6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (dd, J = 13.5, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37-3.32 (m, 1H), 2.65 (dd, $\mathrm{J}=16.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 2 \mathrm{H})$, 2.27 (dd, J = 14.3, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ $(\mathrm{s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.19,0.12,0.08,0.05(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta 172.2,171.3,163.2,163.0,150.5,150.2,141.2$, 139.9, 102.5, 102.4, 100.2, 95.3, 91.6, 82.6, 82.5, 77.9, 77.0, 61.2, $52.4,41.5,40.8,40.2,34.2,32.1,30.0,26.0,25.9,18.3,18.2$, 14.4, -4.3, $-5.2,-5.3 ; \mathrm{MS}$ (FAB) $\mathrm{m} / \mathrm{z} 857.3678$ (MNa^{+} $\left[\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na}\right]=857.3662$).

5'-Amino-2'-O-(tert-butyldimethylsilyl)-3'-[[N-(2'-O-(tert-butyldimethylsilyl)-3',5'-dideoxy-3'-[(ethoxycarbon-yl)methyl]uridin-5'-yl)carboxamido]methyl]-3',5'-dideoxyuridine (56). Procedure C [$\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{~mL}), 1,3$-propanedithiol ($0.276 \mathrm{~mL}, 297 \mathrm{mg}, 2.75 \mathrm{mmol}$), 55 ($380 \mathrm{mg}, 0.455 \mathrm{mmol}$), dried EtOH (8.6 mL), 12 h , chromatography (SSA)] gave 56 (260 mg , 71%): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{MeOH}-\mathrm{d}_{4}, 500 \mathrm{MHz}$) $\delta 7.79$ (d, J $=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77$ (d, J $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}$, $\mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-$ $4.54(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.52$ (dd, J = 15.0, 3.5 Hz, 1H), 3.47 (dd, J = 14.8, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, J $=13.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}=13.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62$ (dd, J = 17.0, $10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59 (dd, J = 15.0, 6.5 $\mathrm{Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, \mathrm{J}=17.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 2 \mathrm{H})$, 2.23 (ddd, J $=14.8,10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.16,0.15,0.08,0.05(4 \times \mathrm{s}, 4 \times 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{MeOH}-\mathrm{d}_{4}, 75 \mathrm{MHz}$) $\delta 174.1,173.7,166.4,152.22$, 152.17, 142.6, 142.4, 102.5, 102.4, 94.2, 93.9, 85.1, 84.1, 79.1,
78.6, 62.0, 44.5, 42.5, 42.1, 32.2, 30.6, 26.6, 26.5, 19.08, 19.05, 14.7, -4.0, -4.1, -4.9, -5.3; MS (FAB) m/z $809.3954\left(\mathrm{MH}^{+}\right.$ $\left[\mathrm{C}_{36} \mathrm{H}_{61} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{Si}_{2}\right]=809.3937$).
5'-Azido-2-O-(tert-butyldimethylsilyl)-3'-[[N-(2-O-(tert-butyldimethylsilyl)-3',5'-dideoxy-3'-(carboxymethyl)uri-din-5'-yl)carboxamido]methyl]-3', 5^{\prime}-dideoxyuridine (57). Procedure D [$\mathrm{NaOH}(109 \mathrm{mg}, 2.73 \mathrm{mmol}), 55(380 \mathrm{mg}, 0.455$ $\mathrm{mmol}), \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(9: 1,11 \mathrm{~mL}), 8 \mathrm{~h}, \mathrm{pH} \sim 4\left(4 \% \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}\right)$, volatiles evaporated, MeOH added, NaCl filtered, filtrate evaporated, residue chromatographed $\left.\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right)\right]$ gave 57 ($235 \mathrm{mg}, 64 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{MeOH}-\mathrm{d}_{4}, 500 \mathrm{MHz}$) $\delta 7.87$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, \mathrm{J}=5.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-$ 4.07 (m, 1H), 4.02 (ddd, J = 10.5, $7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (dd, $\mathrm{J}=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, \mathrm{J}=13.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, J = 14.5, 2.5 Hz, 1H), 3.46 (dd, J $=14.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.59(\mathrm{dd}, \mathrm{J}=17.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, \mathrm{J}=15.8,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{dd}, \mathrm{J}=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ (ddd, J = 14.6, 9.9, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 18 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H})$, 0.16 (s, 3H), 0.08 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{MeOH}-\mathrm{d}_{4}, 75 \mathrm{MHz}$) $\delta 173.9$, 166.5, 166.4, 152.2, 142.4, 142.1, 102.5, 102.3, 93.9, 93.1, 84.7, 83.9, 79.1, 53.2, 43.3, 43.0, 41.3, 33.2, 32.2, 26.6, 19.1, -4.1, -4.86, -4.92; MS (FAB) m/z 829.3344 (MNa+ $\left[\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{O}_{11^{-}}\right.$ $\left.\left.\mathrm{Si}_{2} \mathrm{Na}\right]=829.3349\right)$.

Acknowledgment. We thank Brigham Young University and the American Cancer Society (DPH-34) for financial support and Mrs. J eanny K. Gordon for assistance with the manuscript.

Supporting Information Available: Copies of ${ }^{1} \mathrm{H}$ NMR spectra for $\mathbf{2 , 9}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 6}, 22-28,30,32,33-36,38-45$, and 49-57. This material is available free of charge via the Internet at http://pubs.acs.org.
J 09908647

[^0]: * To whom correspondence should be addressed. Fax: (801) 3785474.
 † Present address: Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil.
 ¥ Present address: ICN Pharmaceuticals, Costa Mesa, CA.
 (1) Nucleic Acid Related Compounds. 110. (Amide-Linked Nucleosides. 2.). Part 109: Robins, M. J.; Ewing, G. J. J. Am. Chem. Soc. 1999, 121, 5823-5824. (Amide-Linked Nucleosides. 1: Reference 10 in the present paper).
 (2) (a) Oligodeoxynucleotides. Antisense Inhibitors of Gene Expression; Cohen, J., Ed.; CRC Press: Boca Raton, 1989. (b) Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 544-584. (c) Cazenave, C.; H élène, C. In AntisenseNucleic Acids and Proténs; Mol, J. N. M., van der Krol, A. R., Eds.; Marcel Dekker: New York, 1991; pp 47-93. (d) Antisense Research and Applications; Crooke, S. T., Lebleu, B., Eds.; CRC Press: Boca Raton, 1993
 (3) (a) Milligan, J. F.; Matteucci, M. D.; Martin, J. C. J. Med. Chem. 1993, 36, 1923-1937. (b) Carbohydrate Modifications in Antisense Research; Sanghvi, Y. S., Cook, P. D., Eds; ACS Symposium 580; American Chemical Society: Washington, DC, 1994. (c) DeMesmaeker, A.; Häner, R.; Martin, P.; M oser, H. E. Acc. Chem. Res. 1995, 28, 366374. (d) Crooke, S. T. Therapeutic Applications of Oligonucl eotides; R. G. Landes: Austin, TX, 1995; pp 85-108.
 (4) (a) Varma, R. S. Synlett 1993, 621-636. (b) De Mesmaeker, A.; Waldner, A.; Wendeborn, S.; Wolf, R. M. Pure Appl. Chem. 1997, 69, 437-440.

[^1]: (10) Robins, M. J.; Sarker, S.; Xie, M.; Zhang, W.; Peterson, M. A. Tetrahedron Lett. 1996, 37, 3921-3924.
 (11) J aroszewski, J. W.; Cohen, J. S. Adv. Drug Delivery Rev. 1991, 6, 235-250.
 (12) (a) Rosenthal, A.; Baker, D. A. J. Org. Chem. 1973, 38, 198201. (b) Lawrence, A. J.; Pavey, J. B. J.; O'Neil, I. A.; Cosstick, R. Tetrahedron Lett. 1995, 36, 6341-6344.
 (13) Hansske, F.; Madej, D.; Robins, M. J. Tetrahedron 1984, 40, 125-135.
 (14) Lee, K.; Wiemer, D. F. J. Org. Chem. 1993, 58, 7808-7812.

[^2]: (15) (a) Chu, C. K.; Doboszewski, B.; Schmidt, W.; Ullas, G. V.; Van Roey, P. J. Org. Chem. 1989, 54, 2767-2769. (b) Sanghvi, Y. S.; Bharadwaj, R.; Debart, F.; De Mesmaeker, A. Synthesis 1994, 11631166. (c) Leitzel, J. C. Ph.D. Dissertation, The Úniversity of Chicago, 1996. (d) Grunder-Klotz, E.; J ust, G. Nucleosides Nucleotides 1994, 13, 1829-1841. (e) Caulfield, T. J .; Prasad, C. P.; Prouty, C. P.; Saha, A. K.; Sardaro, M. P. Bioorg. Med. Chem. Lett. 1993, 3, 2771-2776. (f) Bhat, B.; Swayze, E. E.; Wheeler, P.; Dimock, S.; Perbost, M.; Sanghvi, Y. S. J. Org. Chem. 1996, 61, 8186-8199. (g) Fiandor, J.; Tam, S. Y. Tetrahedron Lett. 1990, 31, 597-600.
 (16) Robins, M. J.; Samano, V.; J ohnson, M. D. J . Org. Chem. 1990, 55, 410-412.
 (17) (a) Velázquez, S.; Huss, S.; Camarasa, M.-J. J. Chem. Soc., Chem. Commun. 1991, 1263-1265. (b) Velázquez, S.; J imeno, M. L.; Huss, S.; Balzarini, J .; Camarasa, M.-J . J . Org. Chem. 1994, 59, 76617670.

[^3]: (19) Usui, H., Ueda, T. Chem. Pharm. Bull. 1986, 34, 15-23.
 (20) Baker, D. C.; Horton, D. Carbohydr. Res. 1972, 21, 393-405.
 (21) Horwitz, J. P.; Tomson, A. J .; Urbanski, J. A.; Chua, J. J . Org. Chem. 1962, 27, 3045-3048.
 (22) Sproat, B. S.; Lamond, A. I. In Oligonucleotides and Analogues: A Practical Approach; Eckstein, F., Ed.; IRL: Oxford, 1991; pp 49-86.
 (23) Samano, V.; Robins, M. J. Synthesis 1991, 283-288.

